Quantum interference in superposed lattices

Charge transport in solids at low temperature reveals a material's mesoscopic properties and structure. Under a magnetic field, Shubnikov-de Haas (SdH) oscillations inform complex quantum transport phenomena that are not limited by the ground state characteristics. Here, in elemental metal Cr with two incommensurately superposed lattices of ions and a spin-density-wave ground state, we reveal that the phases of several low-frequency SdH oscillations in sigma_xx (rho_xx) and sigma_yy (rho_yy) are opposite, contrast with oscillations from normal cyclotron orbits that maintain identical phases. We trace the origin of the low frequency SdH oscillations to quantum interference effects arising from the incommensurate orbits of Cr's superposed reciprocal lattices, and explain the observed pi-phase shift by the reconnection of anisotropic joint open and closed orbits.

[1]  T. Rosenbaum,et al.  X-ray magnetic diffraction under high pressure , 2019, IUCrJ.

[2]  P. Littlewood,et al.  Linear magnetoresistance in the low-field limit in density-wave materials , 2018, Proceedings of the National Academy of Sciences.

[3]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[4]  C. Felser,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[5]  P. Littlewood,et al.  Itinerant density wave instabilities at classical and quantum critical points , 2015, Nature Physics.

[6]  A. Koshelev Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting , 2013, 1307.7184.

[7]  P. Littlewood,et al.  Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments , 2013, Proceedings of the National Academy of Sciences.

[8]  R. Cava,et al.  High-field Shubnikov–de Haas oscillations in the topological insulator Bi 2 Te 2 Se , 2011, 1111.6031.

[9]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[10]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[11]  A. Schofield,et al.  Breakdown of weak-field magnetotransport at a metallic quantum critical point. , 2005, Physical review letters.

[12]  H. Mao,et al.  Energy dispersive x-ray diffraction of charge density waves via chemical filtering , 2005 .

[13]  A. Bostwick,et al.  Electron states and the spin density wave phase diagram in Cr(1 1 0) films , 2005 .

[14]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[15]  G. Mikitik,et al.  Manifestation of Berry's Phase in Metal Physics , 1999 .

[16]  Z. Fisk,et al.  Quantum interference in the spin-polarized heavy fermion compound CeB6: Evidence for topological deformation of the Fermi surface in strong magnetic fields , 1998 .

[17]  New Rochelle,et al.  Magnetic Oscillations in Metals , 1984 .

[18]  D. Feder,et al.  Experimental and theoretical investigation of the magnetic phase diagram of chromium , 1981 .

[19]  R. Reifenberger,et al.  Electron interference oscillations and spin-density-wave energy gaps at the Fermi surface of antiferromagnetic chromium , 1980 .

[20]  T. Mitsui,et al.  Magnetic Field Dependence of the Hall Coefficient in Low Temperature on the Antiferromagnetic Chromium , 1976 .

[21]  R. Griessen,et al.  Stress dependence of the Fermi surface of antiferromagnetic chromium , 1976 .

[22]  N. Alekseevskiǐ,et al.  Magnetic Breakdown in Metals , 1975 .

[23]  D. Wolff The Pseudo-Symmetry of Modulated Crystal Structures , 1974 .

[24]  J. L. Stanford,et al.  Determination of the Fermi surface of molybdenum using the de Haas--van Alphen effect , 1973 .

[25]  J. Strom-Olsen,et al.  Electrical Resistance of Single-Crystal Single-Domain Chromium from 77 to 325 °K , 1971 .

[26]  R. Stark,et al.  Quantum Interference of Electron Waves in a Normal Metal , 1971 .

[27]  W. Reed,et al.  High-Field Galvanomagnetic Effects in Antiferromagnetic Chromium , 1968 .

[28]  A. Gold,et al.  The de Haas-van Alphen effect and the fermi surface of tungsten , 1968 .

[29]  D. Sparlin,et al.  Empirical Fermi-Surface Parameters for W and Mo , 1966 .

[30]  J. Graebner,et al.  De Haas‐van Alphen Effect in Antiferromagnetic Chromium , 1966 .

[31]  R. Knox Principles of the Theory of Solids. , 1965 .

[32]  P. Sievert,et al.  Theory of the Galvanomagnetic Effects in Metals with Magnetic Breakdown: Semiclassical Approach , 1965 .

[33]  J. Ziman Principles of the Theory of Solids , 1965 .

[34]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .

[35]  T. Janssen,et al.  Incommensurability in crystals , 1987 .

[36]  R. Girvan The Fermi surface of tungsten , 1966 .