Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry
暂无分享,去创建一个
[1] A. Lima-Santos,et al. A Bethe ansatz solution for the closed Temperley - Lieb quantum spin chains , 1998, solv-int/9809002.
[2] A. Foerster,et al. On the construction of integrable closed chains with quantum supersymmetry , 1997 .
[3] A. Kirillov,et al. Completeness of Bethe's states for the generalized XXZ model , 1994, hep-th/9403107.
[4] A. Foerster. Quantum group invariant supersymmetric t - J model with periodic boundary conditions , 1996, cond-mat/9701211.
[5] M. Gould,et al. INTEGRABLE SYSTEMS ON OPEN CHAINS WITH QUANTUM SUPERSYMMETRY , 1996 .
[6] H. Fan,et al. Exact diagonalization of the quantum supersymmetric SUq(n|m) model , 1996, cond-mat/9603022.
[7] O. Tirkkonen,et al. Connections of the Liouville model and XXZ spin chain , 1995, hep-th/9506023.
[8] P. Prester,et al. On a quantum group invariant spin chain with non-local boundary conditions , 1994 .
[9] M. Karowski,et al. Highest-weight Uq(sl(n)) modules and invariant integrable n-state models with periodic boundary conditions , 1994, hep-th/9406116.
[10] A. Gonz'alez--Ruiz. Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.
[11] H. Vega,et al. Exact solution of the SUq (n)-invariant quantum spin chains , 1993, hep-th/9309022.
[12] M. Karowski,et al. Quantum-group-invariant integrable n-state vertex models with periodic boundary conditions , 1993, hep-th/9312008.
[13] A. Foerster,et al. The supersymmetric t- J model with quantum group invariance , 1993 .
[14] H. Vega,et al. Bethe ansatz and quantum groups: the light-cone lattice approach (I). Six vertex and SOS models , 1992 .
[15] Rafael I. Nepomechie,et al. Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms , 1990 .
[16] Rafael I. Nepomechie,et al. $q$ Deformations of the O(3) Symmetric Spin 1 Heisenberg Chain , 1990 .
[17] N. Reshetikhin,et al. Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .
[18] A. M. Tsvelick,et al. Heisenberg magnet with an arbitrary spin and anisotropic chiral field , 1986 .
[19] A. Kirillov. Combinatorial identities, and completeness of eigenstates of the Heisenberg magnet , 1985 .
[20] Michio Jimbo,et al. Aq-difference analogue of U(g) and the Yang-Baxter equation , 1985 .
[21] I. Cherednik. Factorizing particles on a half-line and root systems , 1984 .
[22] N. Reshetikhin,et al. Quantum linear problem for the sine-Gordon equation and higher representations , 1983 .
[23] H. Babujian. Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model , 1983 .
[24] L. Takhtajan. The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins , 1982 .
[25] N. Reshetikhin,et al. Yang-Baxter equation and representation theory: I , 1981 .
[26] V. Fateev,et al. MODEL FACTORIZED S MATRIX AND AN INTEGRABLE HEISENBERG CHAIN WITH SPIN 1. (IN RUSSIAN) , 1980 .