Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry

A quantum algebra invariant integrable closed spin 1 chain is introduced and analyzed in detail. The Bethe ansatz equations as well as the energy eigenvalues of the model are obtained. The highest weight property of the Bethe vectors with respect to U-q(sl(2)) is proved. (C) 1999 American Institute of Physics. [S0022-2488(98)01512-6].

[1]  A. Lima-Santos,et al.  A Bethe ansatz solution for the closed Temperley - Lieb quantum spin chains , 1998, solv-int/9809002.

[2]  A. Foerster,et al.  On the construction of integrable closed chains with quantum supersymmetry , 1997 .

[3]  A. Kirillov,et al.  Completeness of Bethe's states for the generalized XXZ model , 1994, hep-th/9403107.

[4]  A. Foerster Quantum group invariant supersymmetric t - J model with periodic boundary conditions , 1996, cond-mat/9701211.

[5]  M. Gould,et al.  INTEGRABLE SYSTEMS ON OPEN CHAINS WITH QUANTUM SUPERSYMMETRY , 1996 .

[6]  H. Fan,et al.  Exact diagonalization of the quantum supersymmetric SUq(n|m) model , 1996, cond-mat/9603022.

[7]  O. Tirkkonen,et al.  Connections of the Liouville model and XXZ spin chain , 1995, hep-th/9506023.

[8]  P. Prester,et al.  On a quantum group invariant spin chain with non-local boundary conditions , 1994 .

[9]  M. Karowski,et al.  Highest-weight Uq(sl(n)) modules and invariant integrable n-state models with periodic boundary conditions , 1994, hep-th/9406116.

[10]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[11]  H. Vega,et al.  Exact solution of the SUq (n)-invariant quantum spin chains , 1993, hep-th/9309022.

[12]  M. Karowski,et al.  Quantum-group-invariant integrable n-state vertex models with periodic boundary conditions , 1993, hep-th/9312008.

[13]  A. Foerster,et al.  The supersymmetric t- J model with quantum group invariance , 1993 .

[14]  H. Vega,et al.  Bethe ansatz and quantum groups: the light-cone lattice approach (I). Six vertex and SOS models , 1992 .

[15]  Rafael I. Nepomechie,et al.  Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms , 1990 .

[16]  Rafael I. Nepomechie,et al.  $q$ Deformations of the O(3) Symmetric Spin 1 Heisenberg Chain , 1990 .

[17]  N. Reshetikhin,et al.  Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .

[18]  A. M. Tsvelick,et al.  Heisenberg magnet with an arbitrary spin and anisotropic chiral field , 1986 .

[19]  A. Kirillov Combinatorial identities, and completeness of eigenstates of the Heisenberg magnet , 1985 .

[20]  Michio Jimbo,et al.  Aq-difference analogue of U(g) and the Yang-Baxter equation , 1985 .

[21]  I. Cherednik Factorizing particles on a half-line and root systems , 1984 .

[22]  N. Reshetikhin,et al.  Quantum linear problem for the sine-Gordon equation and higher representations , 1983 .

[23]  H. Babujian Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model , 1983 .

[24]  L. Takhtajan The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins , 1982 .

[25]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[26]  V. Fateev,et al.  MODEL FACTORIZED S MATRIX AND AN INTEGRABLE HEISENBERG CHAIN WITH SPIN 1. (IN RUSSIAN) , 1980 .