Phase Field Modeling of the Tetragonal-to-Monoclinic Phase Transformation in Zirconia

Abstract The allotropic phase transformation in zirconia from the tetragonal to monoclinic double lattices is known to occur by a martensitic twinning mechanism which shows a complex dependence on temperature, stress and environment. This paper is concerned with the development of a phase field model which accounts for the main metallurgical mechanisms governing this martensitic transition. The symmetry reduction and orientation relationship between the parent and product phases were simulated using several non-conserved order parameters representing different transformation paths. Inhomogeneous and anisotropic elastic properties were considered to determine the resultant elastic stresses. Governing equations of the tetragonal-to-monoclinic transformation were solved in a finite element framework under a variety of initial and boundary conditions. It was shown that applying different initial conditions, such as seed embryo or random, did not change the twinning patterns or the final volume fractions of the parent and product phases after the relaxation period. On the other hand, enforcing different boundary conditions resulted in completely different twinning patterns and phase volume fractions. The model was able to predict both the “V” shape morphology of twinning and the surface stress relief with “gable roof” patterns, which were observed by transmission electron microscopy and atomic force microscopy to be characteristic of the tetragonal-to-monoclinic transition.

[1]  Yongmei M Jin,et al.  Three-dimensional phase field model of proper martensitic transformation , 2001 .

[2]  Danan Fan,et al.  Numerical Simulation of Zener Pinning with Growing Second-Phase Particles , 2005 .

[3]  M. Mayo,et al.  Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders , 2003 .

[4]  G. M. Wolten Diffusionless Phase Transformations in Zirconia and Hafnia , 1963 .

[5]  M. Horstemeyer,et al.  Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study , 2012 .

[6]  K. Oh,et al.  Computer Simulation of Martensitic Transformation in Constrained Films , 2002 .

[7]  S. Shi,et al.  Elastoplastic phase field model for microstructure evolution , 2005 .

[8]  R. Hannink,et al.  Crystallography of the Tetragonal to Monoclinic Transformation in MgO‐Partially‐Stabilized Zirconia , 1986 .

[9]  W. Kriven,et al.  MARTENSITE CRYSTALLOGRAPHY OF TETRAGONAL ZIRCONIA. , 1981 .

[10]  A. Khachaturyan,et al.  Three-dimensional phase field model and simulation of cubic ? tetragonal martensitic transformation in polycrystals , 2002 .

[11]  Gede Agus Widyadana,et al.  Optimal deteriorating items production inventory models with random machine breakdown and stochastic repair time , 2011 .

[12]  F. Aldinger,et al.  “The Zirconia−Hafnia System: DTA Measurements and Thermodynamic Calculations” , 2006 .

[13]  Patrick M. Kelly,et al.  Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .

[14]  T. Koyama,et al.  Phase-Field Simulation of Microstructure Changes in Ni2MnGa Ferromagnetic Alloy Under External Stress and Magnetic Fields , 2003 .

[15]  A. Khachaturyan,et al.  Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys , 2001 .

[16]  S. Mesarovic,et al.  Morphological instabilities in thin films: Evolution maps , 2011 .

[17]  W. Z. Zhu Grain size dependence of the transformation temperature of tetragonal to monoclinic phase in ZrO2(Y2O3) ceramics , 1996 .

[18]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[19]  T. Mura Micromechanics of Defects , 1992 .

[20]  M. Cherkaoui,et al.  Transformations and cracks in zirconia films leading to breakaway oxidation of Zircaloy , 2013 .

[21]  T. Koyama,et al.  Simulation of hexagonal–orthorhombic phase transformation in polycrystals , 2007 .

[22]  T. Sakuma Phase Transformation and Microstructure of Partially-Stabilized Zirconia , 1988 .

[23]  T. Takaki,et al.  Elastoplastic phase-field simulation of self- and plastic accommodations in Cubic→tetragonalCubic→tetragonal martensitic transformation , 2008 .

[24]  Yunzhi Wang,et al.  Three-dimensional field model and computer modeling of martensitic transformations , 1997 .

[25]  J. Chevalier,et al.  Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia , 2003, 1710.04442.

[26]  N. Zhou,et al.  Study of Thermoelastic Martensitic Transformations Using a Phase-Field Model , 2011 .

[27]  M. Swain,et al.  Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals , 1985 .

[28]  A. Heuer,et al.  On a martensitic phase transformation in zirconia (ZrO2)—II. Crystallographic aspects , 1973 .

[29]  L. Chen,et al.  Phase-field simulation of domain structure evolution during a coherent hexagonal-to-orthorhombic transformation , 2000 .

[30]  D. Ter Haar,et al.  Collected Papers of L. D. Landau , 1965 .

[31]  R. Garvie Thermodynamic analysis of the tetragonal to monoclinic transformation in a constrained zirconia microcrystal , 1985 .

[32]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[33]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[34]  P. M. Kelly,et al.  Crystallography of stress-induced martensitic transformations in partially stabilized zirconia , 1986 .

[35]  Landau theory for shape memory polycrystals , 2003, cond-mat/0309206.

[36]  V. Levitas Structural changes without stable intermediate state in inelastic material. Part I. General thermomechanical and kinetic approaches , 2000 .

[37]  Mark F. Horstemeyer,et al.  Effect of the Compositional Strain on the Diffusive Interface Thickness and on the Phase Transformation in a Phase-Field Model for Binary Alloys , 2011 .

[38]  Dean L. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔martensite , 2002 .

[39]  Mark F. Horstemeyer,et al.  Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study , 2012 .

[40]  Yunzhi Wang,et al.  Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses , 2000 .

[41]  Atomic force microscopy study and qualitative analysis of martensite relief in zirconia , 2005, 1710.04443.

[42]  Yunzhi Wang,et al.  Microstructural Development of Coherent Tetragonal Precipitates in Magnesium‐Partially‐Stabilized Zirconia: A Computer Simulation , 1995 .

[43]  Yunzhi Wang,et al.  EFFECT OF ELASTIC INTERACTION ON THE FORMATION OF A COMPLEX MULTI-DOMAIN MICROSTRUCTURAL PATTERN DURING A COHERENT HEXAGONAL TO ORTHORHOMBIC TRANSFORMATION , 1999 .

[44]  Long-Qing Chen,et al.  Computer simulation of structural transformations during precipitation of an ordered intermetallic phase , 1991 .

[45]  J. Szpunar,et al.  Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance , 2007 .

[46]  N. Simha Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia , 1997 .

[47]  K. K. Srivastava,et al.  Martensitic transformation in zirconia , 1974 .

[48]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[49]  Yu U. Wang,et al.  The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study , 2004 .

[50]  Mohsen Asle Zaeem,et al.  Finite element method for conserved phase fields: Stress-mediated diffusional phase transformation , 2010, J. Comput. Phys..

[51]  Mahmood Mamivand,et al.  A review on phase field modeling of martensitic phase transformation , 2013 .

[52]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[53]  M. Horstemeyer,et al.  Investigating the Effects of Grain Boundary Energy Anisotropy and Second-Phase Particles on Grain Growth Using a Phase-Field Model , 2011 .

[54]  David R. Clarke,et al.  The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends , 2009 .

[55]  V. Levitas,et al.  Finite element modeling of dynamics of martensitic phase transitions , 2008 .

[56]  J. Chevalier,et al.  Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief , 2004, 1804.01461.

[57]  A. Heuer,et al.  On a martensitic phase transformation in zirconia (ZrO2)—I. Metallographic evidence , 1972 .

[58]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[59]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[60]  Chen,et al.  Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. , 1994, Physical review. B, Condensed matter.

[61]  N. Navruz A comparative crystallographic analysis of the tetragonal-to-monoclinic transformation in the yttria-zirconia system , 2008 .

[62]  K. Oh,et al.  Cubic to tetragonal martensitic transformation in a thin film elastically constrained by a substrate , 2003 .