High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries.

Iron pyrite is an earth-abundant and inexpensive material that has long been interesting for electrochemical energy storage and solar energy conversion. A large-scale conversion synthesis of phase-pure pyrite nanowires has been developed for the first time. Nano-pyrite cathodes exhibited high Li-storage capacity and excellent capacity retention in Li/pyrite batteries using a liquid electrolyte, which retained a discharge capacity of 350 mAh g(-1) and a discharge energy density of 534 Wh kg(-1) after 50 cycles at 0.1 C rate.

[1]  C. Wolden,et al.  Synthesis of stoichiometric FeS2 through plasma-assisted sulfurization of Fe2O3 nanorods. , 2012, Journal of the American Chemical Society.

[2]  Y. Shao-horn,et al.  Reinvestigation of Lithium Reaction Mechanisms in FeS2 Pyrite at Ambient Temperature , 2002 .

[3]  Younan Xia,et al.  Chemical transformations of nanostructured materials , 2011 .

[4]  E. Cairns,et al.  Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries. , 2012, Nano letters.

[5]  Y. Shao-horn,et al.  Nano- FeS2 for Commercial Li / FeS2 Primary Batteries , 2002 .

[6]  R. Hamers,et al.  Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. , 2012, Nano letters.

[7]  H. Ahn,et al.  Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode , 2006 .

[8]  Stephen A. Morin,et al.  A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes , 2010 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  E. Peled,et al.  Li/CPE/FeS2 rechargeable battery , 1998 .

[11]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[12]  Song Jin,et al.  Synthesis, characterization, and variable range hopping transport of pyrite (FeS₂) nanorods, nanobelts, and nanoplates. , 2013, ACS nano.

[13]  M. Law,et al.  Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. , 2011, Journal of the American Chemical Society.

[14]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[15]  Jinghua Guo,et al.  Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS2 Nanocrystals , 2009 .

[16]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[17]  Z. Tomczuk,et al.  Reactions of FeS2, CoS2, and NiS2 Electrodes in Molten LiCl ‐ KCl Electrolytes , 1983 .

[18]  R. Hamers,et al.  Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. , 2012, Nano letters.

[19]  K. W. Kim,et al.  Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell , 2009 .

[20]  A. Kleppe,et al.  High-pressure Raman spectroscopic studies of FeS2 pyrite , 2004, Mineralogical Magazine.

[21]  S. Passerini,et al.  Investigations of natural pyrite in solvent-free polymer electrolyte‚ lithium metal batteries , 2004 .

[22]  Jian Xia,et al.  Facile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties , 2013 .

[23]  G. Amatucci,et al.  Tracking lithium transport and electrochemical reactions in nanoparticles , 2012, Nature Communications.

[24]  Linsen Li,et al.  High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. , 2012, Nano letters.

[25]  D. Peng,et al.  Representation of the vapour pressures of sulfur , 2001 .

[26]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[27]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[28]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[29]  Jinsong Huang,et al.  Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application. , 2011, Nano letters.

[30]  Lynden A. Archer,et al.  Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage , 2009 .

[31]  A. Ennaoui,et al.  Iron sulphide solar cells , 1984 .

[32]  A. Ennaoui,et al.  Energetic characterization of the photoactive FeS2 (pyrite) interface , 1986 .

[33]  J. Tu,et al.  FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity , 2012 .

[34]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[35]  Y. Shao-horn,et al.  Chemical, structural and electrochemical comparison of natural and synthetic FeS2 pyrite in lithium cells , 2001 .

[36]  A. Ennaoui,et al.  Iron disulfide for solar energy conversion , 1993 .

[37]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[38]  A. Ennaoui,et al.  Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS2) thin films by MOCVD , 1995 .

[39]  H. Vogt,et al.  Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2 , 1983 .

[40]  D. Vissers,et al.  Phase Relationships in Positive Electrodes of High Temperature Li ‐ Al / LiCl ‐ KCl / FeS2 Cells , 1982 .

[41]  J. Schoonman,et al.  Synthesis of pyrite (FeS2) thin films by low-pressure MOCVD , 2000 .

[42]  Stephen A. Morin,et al.  Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations , 2010, Science.

[43]  M. Law,et al.  Atmospheric‐Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films , 2012 .

[44]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[45]  Pralay K. Santra,et al.  Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells. , 2013, The journal of physical chemistry letters.

[46]  A. Ennaoui,et al.  Photoactive Synthetic Polycrystalline Pyrite ( FeS2 ) , 1985 .

[47]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[48]  J. Tu,et al.  Enhanced electrochemical performance of FeS2 synthesized by hydrothermal method for lithium ion batteries , 2012, Journal of Applied Electrochemistry.

[49]  Yijin Liu,et al.  Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. , 2011, Journal of synchrotron radiation.

[50]  J. Dahn,et al.  Electrochemistry of Pyrite‐Based Cathodes for Ambient Temperature Lithium Batteries , 1989 .

[51]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.