Characteristic analysis and comparison of two kinds of hybrid plasmonic annular resonators

We present studies of two kinds of hybrid plasmonic annular resonators with different cross-sectional shapes of circle and square. Their performance as defined by the Q/V ratio is enhanced considerably with a reduction in their physical dimensions. There exists critical annular radii below which “circle ring” outperforms “square ring”.

[1]  Axel Scherer,et al.  Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum. , 2010, Optics express.

[2]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[3]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[4]  Jelena Vučković,et al.  Design of plasmon cavities for solid-state cavity quantum electrodynamics applications , 2007 .

[5]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[6]  D. O’Carroll,et al.  Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. , 2015, Nanoscale.

[7]  Atilla Aydinli,et al.  Plasmonic band gap cavities on biharmonic gratings , 2008 .

[8]  A. Bouhelier,et al.  Submicrometer in-plane integrated surface plasmon cavities. , 2007, Nano letters.

[9]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[10]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[11]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[12]  Yong-Hee Lee,et al.  Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode , 2002 .

[13]  María Ujué González,et al.  Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides , 2004 .

[14]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[17]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[18]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[19]  Axel Scherer,et al.  High Quality Two-Dimensional Photonic Crystal Slab Cavities , 2001 .

[20]  Christophe Dupuis,et al.  High-Q wet-etched GaAs microdisks containing InAs quantum boxes , 1999 .

[21]  Chun-Kit Chan,et al.  Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications , 2014, Scientific Reports.

[22]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[23]  Bing Wang,et al.  Plasmon Bragg reflectors and nanocavities on flat metallic surfaces , 2005 .

[24]  W. Marsden I and J , 2012 .

[25]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[26]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[27]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.