Optical and Structural Characterization of Erbium-Doped TiO2 Xerogel Films Processed on Porous Anodic Alumina

Titania films, doped with erbium, were fabricated on porous anodic alumina from a Ti(OC 2 H 5 ) 4 precursor. The samples, subjected to thermal processing up to 1270 K, exhibited strong luminescence at 1.53 μm associated with 4 I 13/2 → 4 I 15/2 transitions of Er 3+ ions in the TiO 2 xerogel. The intensity of photoluminescence increased with the number of xerogel lilm depositions onto alumina. Secondary ion mass spectrometry analyses show that the pores of anodic alumina are filled by the xerogel after sequential spinning of ten layers. Cooling of the samples to 4.2 K gives enhancement of the intensity of the Er-related hand at 1.53 μm and narrowing of the full width at half maximum from 20 to 10 nm.

[1]  B. Hamilton,et al.  Photoluminescence of Er-implanted silica, polysiloxane and porous silicon films , 2000 .

[2]  H. Bardeleben,et al.  1.5 μm infrared photoluminescence phenomena in Er-doped porous silicon , 1999 .

[3]  B. Hamilton,et al.  On the origin of 1.5 μm luminescence in porous silicon coated with sol–gel derived erbium-doped Fe2O3 films , 1998 .

[4]  A. Mudryi,et al.  Room-temperature formation of erbium-related luminescent centers in anodic alumina , 1998 .

[5]  C. E. Chryssou,et al.  Er/sup 3+/-doped Al/sub 2/O/sub 3/ thin films by plasma-enhanced chemical vapor deposition (PECVD) exhibiting a 55-nm optical bandwidth , 1998 .

[6]  R. F. Pinizzotto,et al.  Erbium doped SiO2 layers formed on the surface of silicon by spark processing , 1997 .

[7]  Markus P. Hehlen,et al.  Spectroscopic properties of Er 3+ - and Yb 3+ -doped soda-lime silicate and aluminosilicate glasses , 1997 .

[8]  G. V. Hansson,et al.  Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy , 1997 .

[9]  Jean-Pierre Vilcot,et al.  Preparation and characterization of sol-gel derived Er3+: Al2O3–SiO2 planar waveguides , 1997 .

[10]  A. Polman,et al.  Erbium implanted thin film photonic materials , 1997 .

[11]  U. Rodríguez-Mendoza,et al.  Kinetics of transfer and backtransfer in Yb3+-Er3+ codoped fluoroindate glasses , 1997 .

[12]  J. McGilp,et al.  Erbium and terbium photoluminescence in silica sol–gel films on porous alumina , 1997 .

[13]  W. Stręk,et al.  Spectroscopic and physicochemical properties of rare-earth phthalocyanines entrapped in sol-gel glasses , 1997 .

[14]  F. Julien,et al.  Erbium doping of Si via ion-beam-induced epitaxial crystallization: another route to room-temperature photoluminescence , 1997 .

[15]  R. M. Almeida,et al.  Silica-based sol-gel optical waveguides on silicon , 1996 .

[16]  Carmen N. Afonso,et al.  In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition , 1996 .

[17]  H. Gnaser Towards a 3D Characterization of Solids by MCs+ SIMS , 1996 .

[18]  R. F. Pinizzotto,et al.  Formation of rare‐earth oxide doped silicon by spark processing , 1996 .

[19]  F. Namavar,et al.  A spectroscopic study on the luminescence of Er in porous silicon , 1996 .

[20]  Hyungsoo Choi,et al.  Fabrication of highly concentrated Er3+ doped aluminosilicate films via sol‐gel processing , 1995 .

[21]  R. Soref,et al.  Strong room‐temperature infrared emission from Er‐implanted porous Si , 1995 .

[22]  H. Oechsner,et al.  Erbium luminescence in porous silicon doped from spin‐on films , 1995 .

[23]  Toshiaki Ikoma,et al.  Electrochemical Er doping of porous silicon and its room‐temperature luminescence at ∼1.54 μm , 1994 .

[24]  H. Gnaser Improved quantification in secondary‐ion mass spectrometry detecting MCs+ molecular ions , 1994 .

[25]  K. Wittmaack Basic requirements for quantitative SIMS analysis using cesium bombardment and detection of MCs+ secondary ions , 1992 .

[26]  Charles W. Magee,et al.  On the use of CsX+ cluster ions for major element depth profiling in secondary ion mass spectrometry , 1990 .

[27]  M. Amann,et al.  Reliable Spin‐On Source for Acceptor Diffusion into III/V Compound Semiconductors , 1989 .

[28]  Y. Gao A new secondary ion mass spectrometry technique for III‐V semiconductor compounds using the molecular ions CsM+ , 1988 .

[29]  A. Axmann,et al.  1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon , 1983 .

[30]  Harry Smith Hormone action in plants , 1978, Nature.

[31]  H. Storms,et al.  Evaluation of a cesium positive ion source for secondary ion mass spectrometry , 1977 .

[32]  J. McGilp,et al.  Erbium and Terbium Luminescence from Sol–Gel Derived In2O3 Films on Porous Silicon , 1998 .

[33]  H. Suche,et al.  Implantation Doping and Stimulated Emission of Er 3+ in LinbO 3 :Ti Optical Waveguides , 1990 .

[34]  A. Benninghoven,et al.  Secondary ion mass spectrometry : SIMS V : proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985 , 1986 .