The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model

GRB 130427A was the brightest gamma-ray burst detected in the last 30 yr. With an equivalent isotropic energy output of 8.5 × 1053 erg and redshift z = 0.34, it uniquely combined very high energetics with a relative proximity to Earth. As a consequence, its X-ray afterglow has been detected by sensitive X-ray observatories such as XMM–Newton and Chandra for a record-breaking baseline longer than 80 million seconds. We present the X-ray light curve of this event over such an interval. The light curve shows a simple power-law decay with a slope α = 1.309 ± 0.007 over more than three decades in time (47 ks–83 Ms). We discuss the consequences of this result for a few models proposed so far to interpret GRB 130427A, and more in general the significance of this outcome in the context of the standard forward shock model. We find that this model has difficulty in explaining our data, in both cases of constant density and stellar-wind circumburst media, and requires far-fetched values for the physical parameters involved.

[1]  Z. Cano,et al.  A self-consistent analytical magnetar model: the luminosity of γ-ray burst supernovae is powered by radioactivity , 2016, 1601.02610.

[2]  B. Metzger,et al.  The diversity of transients from magnetar birth in core collapse supernovae , 2015, 1508.02712.

[3]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[4]  D. A. Kann,et al.  GRB hosts through cosmic time - VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 , 2015, 1505.06743.

[5]  J. Fynbo,et al.  GRB 140606B/iPTF14bfu: Detection of shock-breakout emission from a cosmological γ -ray burst? , 2015, 1505.03522.

[6]  D. Frail,et al.  EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE FERMI/LAT DETECTED GRB 130907A , 2014, 1411.7368.

[7]  Bing Zhang,et al.  The physics of gamma-ray bursts & relativistic jets , 2014, 1410.0679.

[8]  S. Beck The Youngest Globular Clusters , 2014, 1412.0769.

[9]  D. Malesani,et al.  Diversity of gamma-ray burst energetics vs. supernova homogeneity , 2014 .

[10]  E. Pian,et al.  An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars , 2014, 1406.1209.

[11]  D. A. Kann,et al.  GRB 120711A: an intense INTEGRAL burst with long-lasting soft γ-ray emission and a powerful optical flash , 2014, 1405.7396.

[12]  Luigi Piro,et al.  A HOT COCOON IN THE ULTRALONG GRB 130925A: HINTS OF A POPIII-LIKE PROGENITOR IN A LOW-DENSITY WIND ENVIRONMENT , 2014, 1405.2897.

[13]  K. Wiersema,et al.  A comprehensive radio view of the extremely bright gamma-ray burst 130427A , 2014, 1404.1945.

[14]  B. Nath,et al.  In a hot bubble: why does superbubble feedback work, but isolated supernovae do not? , 2014, 1402.6695.

[15]  A. Beloborodov,et al.  PAIR-DOMINATED GeV–OPTICAL FLASH IN GRB 130427A , 2014, 1402.2595.

[16]  D. A. Kann,et al.  GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts , 2014, 1401.3774.

[17]  A. J. van der Horst,et al.  Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A , 2013, Science.

[18]  A. J. van der Horst,et al.  The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks , 2013, Science.

[19]  D. Palmer,et al.  The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A , 2013, Science.

[20]  T. Sakamoto,et al.  GRB 130427A: A Nearby Ordinary Monster , 2013, Science.

[21]  P. Wozniak,et al.  “SELF-ABSORBED” GeV LIGHT CURVES OF GAMMA-RAY BURST AFTERGLOWS , 2013, 1308.3197.

[22]  J. Fynbo,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE AFTERGLOW, SUPERNOVA, AND HOST GALAXY ASSOCIATED WITH THE EXTREMELY BRIGHT GRB 130427A , 2013, 1307.5338.

[23]  D. A. Kann,et al.  THE AFTERGLOW OF GRB 130427A FROM 1 TO 1016 GHz , 2013, 1307.4401.

[24]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[25]  E. Mazets,et al.  THE ULTRALUMINOUS GRB 110918A , 2013, 1311.5734.

[26]  Chris L. Fryer,et al.  NuSTAR OBSERVATIONS OF GRB 130427A ESTABLISH A SINGLE COMPONENT SYNCHROTRON AFTERGLOW ORIGIN FOR THE LATE OPTICAL TO MULTI-GEV EMISSION , 2013, 1311.5245.

[27]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[28]  Bing Zhang,et al.  A complete reference of the analytical synchrotron external shock models of gamma-ray bursts , 2013, 1310.2181.

[29]  M. Peimbert,et al.  DENSITIES, TEMPERATURES, PRESSURES, AND ABUNDANCES DERIVED FROM O ii RECOMBINATION LINES IN H ii REGIONS AND THEIR IMPLICATIONS , 2013, 1310.0089.

[30]  E. Feigelson,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013, 1306.2307.

[31]  P. Jakobsson,et al.  DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A , 2013, 1305.6832.

[32]  R. Margutti,et al.  A REVERSE SHOCK IN GRB 130427A , 2013, 1305.2453.

[33]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[34]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[35]  D. A. Kann,et al.  MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW , 2013 .

[36]  G. Ghisellini,et al.  Afterglow emission in gamma-ray bursts - I. Pair-enriched ambient medium and radiative blast waves , 2012, 1211.2806.

[37]  B. Gendre,et al.  THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.

[38]  G. Letawe,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION , 2012, 1205.3490.

[39]  J. Brown,et al.  BROADBAND STUDY OF GRB 091127: A SUB-ENERGETIC BURST AT HIGHER REDSHIFT? , 2012, 1201.4181.

[40]  J. Kasting,et al.  ERRATUM: “LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES” (2010, ApJ, 723, 1168) , 2011 .

[41]  T. Piran,et al.  ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? , 2011, 1107.1346.

[42]  Andrew A. West,et al.  THE FORMATION OF KILOPARSEC-SCALE H i HOLES IN DWARF GALAXIES , 2011, 1105.4117.

[43]  Bing Zhang,et al.  THE INTERNAL-COLLISION-INDUCED MAGNETIC RECONNECTION AND TURBULENCE (ICMART) MODEL OF GAMMA-RAY BURSTS , 2010, 1011.1197.

[44]  D. A. Kann,et al.  The circumburst density profile around GRB progenitors: a statistical study , 2010, 1010.4057.

[45]  D. Frail,et al.  AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS , 2010, 1004.2900.

[46]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[47]  N. Gehrels,et al.  LATE-TIME DETECTIONS OF THE X-RAY AFTERGLOW OF GRB 060729 WITH CHANDRA—THE LATEST DETECTIONS EVER OF AN X-RAY AFTERGLOW , 2009, 0903.1258.

[48]  Astrophysics,et al.  The size-density relation of extragalactic H II regions , 2009, 0910.2804.

[49]  A. MacFadyen,et al.  THE DYNAMICS AND AFTERGLOW RADIATION OF GAMMA-RAY BURSTS. I. CONSTANT DENSITY MEDIUM , 2009, 0902.2396.

[50]  M. J. Page,et al.  A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope , 2009, 0901.3597.

[51]  P. Schady,et al.  Jet breaks at the end of the slow decline phase of Swift GRB light curves , 2008, 0809.4688.

[52]  T. Sakamoto,et al.  JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.

[53]  E. Mazets,et al.  Broadband observations of the naked-eye γ-ray burst GRB 080319B , 2008, Nature.

[54]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[55]  Ramesh Narayan,et al.  Mass fall-back and accretion in the central engine of gamma-ray bursts , 2008, 0807.0441.

[56]  M. Vietri Foundations of High-Energy Astrophysics , 2008 .

[57]  A. J. Levan,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS , 2007, 0712.2186.

[58]  Nathaniel Butler,et al.  Gamma-Ray Burst Energetics in the Swift Era , 2007, 0707.4478.

[59]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[60]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[61]  P. Conconi,et al.  REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination , 2006, astro-ph/0612607.

[62]  B.Zhang,et al.  Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst? , 2006, astro-ph/0611089.

[63]  T. Sakamoto,et al.  GRB Radiative Efficiencies Derived from the Swift Data: GRBs versus XRFs, Long versus Short , 2006, astro-ph/0610177.

[64]  Chris L. Fryer,et al.  The Environments around Long-Duration Gamma-Ray Burst Progenitors , 2006, astro-ph/0604432.

[65]  A. Panaitescu,et al.  Jets, Structured Outflows, and Energy Injection in GRB Afterglows: Numerical Modelling , 2005, astro-ph/0508426.

[66]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[67]  J. Mckinney,et al.  Total and Jet Blandford-Znajek Power in the Presence of an Accretion Disk , 2005, astro-ph/0506367.

[68]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[69]  P. Giommi,et al.  Chandra Observations of the X-Ray Environs of SN 1998bw/GRB 980425 , 2004, astro-ph/0401184.

[70]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[71]  W. Priedhorsky,et al.  XMM-Newton RGS spectroscopy of LMC X-3 , 2003, astro-ph/0307419.

[72]  Elena M. Rossi,et al.  Afterglow Lightcurves, Viewing Angle and the Jet Structure of Gamma‐Ray Bursts , 2003 .

[73]  Bing Zhang,et al.  Gamma-Ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? , 2001, astro-ph/0112118.

[74]  M. Rees,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2001, astro-ph/0112083.

[75]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[76]  J. Wheeler,et al.  Preexisting Superbubbles as the Sites of Gamma-Ray Bursts , 2001, astro-ph/0105369.

[77]  Chris L. Fryer,et al.  The Merger of a Helium Star and a Black Hole: Gamma-Ray Bursts , 2000, astro-ph/0011236.

[78]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[79]  H. Lee,et al.  The Blandford-Znajek process as a central engine for a gamma-ray burst , 1999, astro-ph/9906213.

[80]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[81]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[82]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[83]  M. Rees,et al.  Viewing Angle and Environment Effects in Gamma-Ray Bursts: Sources of Afterglow Diversity , 1997, astro-ph/9709273.

[84]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[85]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[86]  R. Weaver,et al.  Interstellar bubbles. II - Structure and evolution , 1977 .

[87]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[88]  S. Colgate Neutron-Star Formation, Thermonuclear Supernovae, and Heavy-Element Reimplosion , 1971 .