The LANS-α and Leray turbulence parameterizations in primitive equation ocean modeling

Ocean modeling presents several unique technical challenges: there is a tremendous range of spatial scales; the kinetic energy forcing scale occurs at the Rossby radius of deformation (20–100 km), which is often at or below the grid resolution; and mixing is strongly anisotropic, occurring primarily along nearly horizontal isopycnal surfaces. We present analysis and numerical results to show that the Lagrangian-averaged Navier–Stokes alpha (LANS-α) turbulence parameterization and, to a lesser extent, the Leray parameterization are well suited to ocean modeling. LANS-α and Leray are fundamentally different from purely dissipative turbulence models in that both LANS-α and Leray are more energetic and produce more eddy structure near the gridscale. This is consistent with expectation from linear stability analysis, where it has been shown that these models resolve the process of baroclinic instability on coarser meshes than standard Navier–Stokes. Formulations of LANS-α and Leray models for the primitive equations are presented. In an idealized ocean channel domain, LANS-α produces turbulence statistics in kinetic energy, eddy kinetic energy and temperature distributions that resemble a doubled-resolution simulation without LANS-α. Leray produces qualitatively similar results, but to a lesser degree than LANS-α. Finally, the Leray model is tested in a North Atlantic domain with realistic topography and forcing, and produces higher kinetic and eddy kinetic energy than the non-Leray model.

[1]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[2]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[3]  Beth A. Wingate The Maximum Allowable Time Step for the Shallow Water α Model and Its Relation to Time-Implicit Differencing , 2004 .

[4]  R. Scott,et al.  Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry , 2005 .

[5]  Frank O. Bryan,et al.  Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system , 2007 .

[6]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[7]  G. Flierl,et al.  Nonlinear energy and enstrophy transfers in a realistically stratified ocean , 1980 .

[8]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[9]  M. Maltrud,et al.  Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .

[10]  J. Marshall,et al.  The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current , 2002 .

[11]  M. Maltrud,et al.  An eddy resolving global 1/10° ocean simulation , 2005 .

[12]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[13]  Harold Solomon On the Representation of Isentropic Mixing in Ocean Circulation Models , 1971 .

[14]  Darryl D. Holm,et al.  Modeling Mesoscale Turbulence in the Barotropic Double-Gyre Circulation , 2003 .

[15]  B. Arbic,et al.  Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics , 2007 .

[16]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[17]  Stephen M. Griffies,et al.  Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models , 2000 .

[18]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[19]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[20]  Peter R. Gent,et al.  Anisotropic Gent–McWilliams Parameterization for Ocean Models , 2004 .

[21]  Patrick J. Hogan,et al.  Impact of 1/8° to 1/64° resolution on Gulf Stream model–data comparisons in basin-scale subtropical Atlantic Ocean models , 2000 .

[22]  R. Salmon,et al.  Baroclinic instability and geostrophic turbulence , 1980 .

[23]  Darryl D. Holm,et al.  Baroclinic Instabilities of the Two-Layer Quasigeostrophic Alpha Model , 2005 .

[24]  W. G. Strand,et al.  Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3 , 2006 .

[25]  P. Gent,et al.  The NCAR Climate System Model, Version One* , 1998 .

[26]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[27]  Beth A. Wingate,et al.  Efficient form of the LANS-α turbulence model in a primitive-equation ocean model , 2008, J. Comput. Phys..

[28]  Robert Hallberg,et al.  The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project , 2006 .

[29]  James C. McWilliams,et al.  Equilibrium Geostrophic Turbulence I: A Reference Solution in a β-Plane Channel , 1981 .

[30]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[31]  G. Vallis,et al.  The Effects of Mesoscale Eddies on the Stratification and Transport of an Ocean with a Circumpolar Channel , 2005 .

[32]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[33]  Darryl D. Holm,et al.  Leray and LANS-α modelling of turbulent mixing , 2005, nlin/0504038.

[34]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[35]  D. Haidvogel,et al.  Numerical Simulations of the Vertical Structure of Quasi-Geostrophic Turbulence , 1986 .

[36]  Darryl D. Holm,et al.  Implementation of the LANS-α turbulence model in a primitive equation ocean model , 2008, J. Comput. Phys..

[37]  Darryl D. Holm,et al.  The Camassa-Holm equations and turbulence , 1999 .

[38]  Y. Sasai,et al.  An eddy-resolving simulation of the quasi-global ocean driven by satellite-observed wind field : Preliminary outcomes from physical and biological fields , 2006 .

[39]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .