Mechanism of Irreversible Electroporation in Cells: Insight from the Models

In the last 20 years, electroporation studies have focused primarily on reversible electroporation because of its importance for drug and gene delivery. Irreversible electroporation (IRE) was mostly studied in the context of the delayed tissue damage in high-voltage accidents [70, 69], the postshock arrhythmias during defibrillation [51, 50], and biofouling control [46, 95]. Very recently, IRE has shown great promise as a nonthermal technique for the ablation of tumors and arrhythmogenic regions in the heart [20, 27, 91, 85, 4, 68]. IRE’s ability to create a complete and predictable cell ablation with a sharp transition between normal and necrotic tissue, while sparing neighboring blood vessels, connective tissue, and nerves, has great advantages in a variety of medical applications.

[1]  V. F. Pastushenko,et al.  Electric breakdown of bilayer lipid membranes , 1979 .

[2]  S. Boggs,et al.  Effect of Pore Size on the Calculated Pressure at Biological Cells Pore Wall , 2006, IEEE Transactions on NanoBioscience.

[3]  J. Weaver Molecular Basis for Cell Membrane Electroporation a , 1994, Annals of the New York Academy of Sciences.

[4]  R E Jones,et al.  Microlesion formation in myocardial cells by high-intensity electric field stimulation. , 1987, The American journal of physiology.

[5]  Damijan Miklavčič,et al.  Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F , 2003 .

[6]  P. Nelson,et al.  Dynamically stabilized pores in bilayer membranes. , 1996, Biophysical journal.

[7]  Damijan Miklavčič,et al.  Cell membrane fluidity related to electroporation and resealing , 2006, European Biophysics Journal.

[8]  A. Heuer,et al.  過冷却Lennard‐Jones流体におけるホッピング:準ベイスン,待ち時間分布および拡散 , 2003 .

[9]  R. Lee,et al.  Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. , 1999, Bioelectromagnetics.

[10]  K. Schoenbach,et al.  Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  D Miklavcic,et al.  Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. , 2001, Bioelectrochemistry.

[12]  Juergen F Kolb,et al.  Long‐lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF) , 2007, Bioelectromagnetics.

[13]  James C Weaver,et al.  Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. , 2006, Biochemical and biophysical research communications.

[14]  L. Jan Ion Channels—Molecules in Action , 1996, Cell.

[15]  J. Weaver Electroporation theory. Concepts and mechanisms. , 1995, Methods in molecular biology.

[16]  Boris Rubinsky,et al.  Irreversible Electroporation: Implications for Prostate Ablation , 2007, Technology in cancer research & treatment.

[17]  E. Chambers,et al.  Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. , 1979, Experimental cell research.

[18]  K. Schoenbach,et al.  Theoretical predictions of electromechanical deformation of cells subjected to high voltages for membrane electroporation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  R. Benz,et al.  Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study , 1979, The Journal of Membrane Biology.

[20]  H. C. Mastwijk,et al.  Electroporation of cells in microfluidic devices: a review , 2006, Analytical and bioanalytical chemistry.

[21]  K. Schoenbach,et al.  Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  L. Chernomordik,et al.  The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. , 1987, Biochimica et biophysica acta.

[23]  Wanda Krassowska,et al.  Asymptotic model of electroporation , 1999 .

[24]  J. Teissié,et al.  Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. , 1994, European journal of biochemistry.

[25]  Hervé Isambert,et al.  Understanding the Electroporation of Cells and Artificial Bilayer Membranes , 1998 .

[26]  W. Helfrich,et al.  Deformation of spherical vesicles by electric fields , 1988 .

[27]  A. T. Esser,et al.  Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue , 2007, Technology in cancer research & treatment.

[28]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M Cieplak 蛋白質の折りたたみにおける協調性と接触秩序 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2004 .

[30]  I. G. Abidor,et al.  Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions. , 1994, Biophysical journal.

[31]  James C. Weaver,et al.  Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes☆ , 1991 .

[32]  J. Madison,et al.  Muscarinic cholinergic inhibition of adenylate cyclase in airway smooth muscle. , 1987, The American journal of physiology.

[33]  K. Schoenbach,et al.  The effect of pulsed electric fields on biological cells: experiments and applications , 1997 .

[34]  A. T. Esser,et al.  Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  T. Tsong,et al.  Voltage-induced pore formation and hemolysis of human erythrocytes. , 1977, Biochimica et biophysica acta.

[36]  Luke P. Lee,et al.  Single-cell electroporation arrays with real-time monitoring and feedback control. , 2007, Lab on a chip.

[37]  M. Winterhalter,et al.  INFLUENCE OF SURFACE CHARGES ON THE RUPTURE OF BLACK LIPID MEMBRANES , 1998 .

[38]  L. Mir,et al.  A Study of the Immunological Response to Tumor Ablation with Irreversible Electroporation , 2007, Technology in cancer research & treatment.

[39]  Boris Rubinsky,et al.  ELECTROPORATION: BIO-ELECTROCHEMICAL MASS TRANSFER AT THE NANO SCALE , 2000 .

[40]  Shesha H. Jayaram,et al.  HIGH VOLTAGE PULSE APPLICATION FOR THE DESTRUCTION OF THE GRAM-NEGATIVE BACTERIUM YERSINIA ENTEROCOLITICA , 1997 .

[41]  A. Barnett,et al.  The current-voltage relation of an aqueous pore in a lipid bilayer membrane. , 1990, Biochimica et biophysica acta.

[42]  K. Schoenbach,et al.  Modeling studies of cell response to ultrashort, high-intensity electric fields-implications for intracellular manipulation , 2004, IEEE Transactions on Plasma Science.

[43]  J Teissié,et al.  The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. , 1999, Biochimica et biophysica acta.

[44]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[45]  Hiroyasu Itoh,et al.  3 – Events of Membrane Electroporation Visualized on a Time Scale from Microsecond to Seconds , 2012 .

[46]  T. Tsong,et al.  Formation and resealing of pores of controlled sizes in human erythrocyte membrane , 1977, Nature.

[47]  Wanda Krassowska,et al.  Model of creation and evolution of stable electropores for DNA delivery. , 2004, Biophysical journal.

[48]  Herman P. Schwan,et al.  Dielectrophoresis and Rotation of Cells , 1989 .

[49]  Boris Rubinsky,et al.  Theoretical analysis of the thermal effects during in vivo tissue electroporation. , 2003, Bioelectrochemistry.

[50]  J. Weaver,et al.  Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. , 1994, Biophysical journal.

[51]  L. Chernomordik,et al.  Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. , 1988, Biochimica et biophysica acta.

[52]  J. Teissié,et al.  Chinese hamster ovary cells sensitivity to localized electrical stresses. , 1999, Bioelectrochemistry and bioenergetics.

[53]  W. Meier,et al.  Viscosity- and Inertia-Limited Rupture of Dextran-Supported Black Lipid Membranes , 1999 .

[54]  Raphael C. Lee,et al.  Cell Injury by Electric Forces , 2005, Annals of the New York Academy of Sciences.

[55]  H. Itoh,et al.  Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. , 1993, Biophysical journal.

[56]  Y. Chizmadzhev,et al.  Electrical Breakdown of Lipid Bilayer Membranes Phenomenology and Mechanism , 1989 .

[57]  Leonard C. Rosen,et al.  Applied Mathematics of Science and Engineering , 1971 .

[58]  W. Krassowska,et al.  Modeling postshock evolution of large electropores. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  K. Schoenbach,et al.  Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  M. R. Tarasevich,et al.  [Electrical breakdown of lipid bilayer membranes]. , 1978, Doklady Akademii nauk SSSR.

[61]  M. Winterhalter,et al.  Influence of Polylysine on the Rupture of Negatively Charged Membranes , 1998 .

[62]  C. Proskauer,et al.  Ultrastructural Injury to Chick Myocardial Cells in Vitro Following "Electric Countershock" , 1980, Circulation research.

[63]  W. Krassowska,et al.  Electrical energy required to form large conducting pores. , 2003, Bioelectrochemistry.

[64]  R. Benz,et al.  Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes. , 1993, Biophysical journal.

[65]  L. Chernomordik,et al.  Breakdown of lipid bilayer membranes in an electric field , 1983 .

[66]  P. Gennes,et al.  Transient pores in stretched vesicles: role of leak-out , 2000, Physica A: Statistical Mechanics and its Applications.

[67]  R. Meldrum,et al.  Electroporation-induced damage in mammalian cell DNA. , 1995, Biochimica et biophysica acta.

[68]  H. Dreyfus Phenomenology and Mechanism , 1971 .

[69]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[70]  I. Bivas,et al.  Fields and forces acting on a planar membrane with a conducting channel. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  K. Schoenbach,et al.  Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. , 2004, Physiological measurement.

[72]  Boris Rubinsky,et al.  A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. , 2007, The heart surgery forum.

[73]  J. Weaver,et al.  Transport lattice approach to describing cell electroporation: use of a local asymptotic model , 2004, IEEE Transactions on Plasma Science.

[74]  Volume and ionic composition changes in erythrocytes after electric breakdown: Simulation and experiment , 1986 .

[75]  A. Haase,et al.  Resistivity of Red Blood Cells Against High-Intensity, Short-Duration Electric Field Pulses Induced by Chelating Agents , 1999, The Journal of Membrane Biology.

[76]  Winterhalter,et al.  Effect of voltage on pores in membranes. , 1987, Physical review. A, General physics.

[77]  Boris Rubinsky,et al.  In vivo results of a new focal tissue ablation technique: irreversible electroporation , 2006, IEEE Transactions on Biomedical Engineering.

[78]  Mario Markus,et al.  Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  W Krassowska,et al.  Modeling electroporation in a single cell. II. Effects Of ionic concentrations. , 1999, Biophysical journal.

[80]  M. Okino,et al.  Optimal Electric Conditions in Electrical Impulse Chemotherapy , 1992, Japanese journal of cancer research : Gann.

[81]  4 – Time Sequence of Molecular Events in Electroporation , 1991 .

[82]  L. Mir,et al.  Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. , 2001, Bioelectrochemistry.

[83]  P. Park,et al.  Dynamics of pore growth in membranes and membrane stability. , 1997, Biophysical journal.

[84]  M. Winterhalter On the defect growth after short electric field pulses in planar lipid bilayers , 1999 .

[85]  Luke P. Lee,et al.  A single cell electroporation chip. , 2005, Lab on a chip.

[86]  J. Weaver,et al.  A quantitative theory of reversible electrical breakdown in bilayer membranes , 1986 .

[87]  B Deuticke,et al.  Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. , 1985, Biochimica et biophysica acta.

[88]  J. Israelachvili Intermolecular and surface forces , 1985 .

[89]  Ravindra P. Joshi,et al.  Ultrashort electrical pulses open a new gateway into biological cells , 2004, Proceedings of the IEEE.

[90]  Cells in Electric Fields , 1989 .

[91]  A. T. Esser,et al.  Microdosimetry for conventional and supra-electroporation in cells with organelles. , 2006, Biochemical and biophysical research communications.

[92]  O. Koul,et al.  Concepts and mechanisms. , 2004 .

[93]  L. Fournier,et al.  Lattice model for the kinetics of rupture of fluid bilayer membranes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[95]  Raphael C. Lee,et al.  Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes , 1987, Plastic and reconstructive surgery.

[96]  Jac A. Nickoloff,et al.  Animal cell electroporation and electrofusion protocols , 1995 .

[97]  H. Itoh,et al.  Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. , 1991, Biophysical journal.

[98]  G. Zocchi,et al.  Local cooperativity mechanism in the DNA melting transition. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  H. Ti Tien,et al.  METHODS FOR THE FORMATION OF SINGLE BIMOLECULAR LIPID MEMBRANES IN AQUEOUS SOLUTION , 1963 .

[100]  O. Diekmann,et al.  Comment on "Linking population-level models with growing networks: a class of epidemic models". , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  H. Hülsheger,et al.  Lethal effects of high-voltage pulses on E. coli K12 , 1980, Radiation and environmental biophysics.

[102]  M. Rols,et al.  Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. , 1992, Biochimica et biophysica acta.

[103]  E. Neumann,et al.  Electroporation and Electrofusion in Cell Biology , 1989, Springer US.

[104]  J. Shillcock,et al.  Entropy-driven instability and rupture of fluid membranes. , 1996, Biophysical journal.

[105]  O Orwar,et al.  Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Veronika Kralj-Iglič,et al.  Stabilization of Pores in Lipid Bilayers by Anisotropic Inclusions , 2003 .

[107]  Boris Rubinsky,et al.  Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells , 1999 .

[108]  R. Benz,et al.  On the dynamics of the electric field induced breakdown in lipid membranes , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[109]  James C. Weaver,et al.  Electroporation in cells and tissues: A biophysical phenomenon due to electromagnetic fields , 1995 .

[110]  W. Krassowska,et al.  Viability of Cancer Cells Exposed to Pulsed Electric Fields: The Role of Pulse Charge , 2004, Annals of Biomedical Engineering.

[111]  Siewert J Marrink,et al.  Molecular dynamics simulations of hydrophilic pores in lipid bilayers. , 2004, Biophysical journal.

[112]  T. Reese,et al.  Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. , 1990, Biophysical journal.

[113]  I. Tsoneva,et al.  Are the stainless steel electrodes inert? , 2000, Bioelectrochemistry.

[114]  J Teissié,et al.  Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. , 1995, Biochimica et biophysica acta.

[115]  V. F. Pastushenko,et al.  247 - Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation , 1979 .

[116]  O Orwar,et al.  Electroporation of single cells and tissues with an electrolyte-filled capillary. , 2001, Analytical chemistry.

[117]  M. M. Kekez,et al.  Contribution to the biophysics of the lethal effects of electric field on microorganisms. , 1996, Biochimica et biophysica acta.

[118]  W. Krassowska,et al.  Modeling electroporation in a single cell. , 2007, Biophysical journal.

[119]  W. Krassowska,et al.  Modeling electroporation in a single cell. I. Effects Of field strength and rest potential. , 1999, Biophysical journal.

[120]  K. Schoenbach,et al.  Intracellular effect of ultrashort electrical pulses , 2001, Bioelectromagnetics.

[121]  D. Zhelev,et al.  Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. , 1993, Biochimica et biophysica acta.

[122]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[123]  H. Hülsheger,et al.  Killing of bacteria with electric pulses of high field strength , 1981, Radiation and environmental biophysics.

[124]  Boris Rubinsky,et al.  Irreversible Electroporation: A New Ablation Modality — Clinical Implications , 2007, Technology in cancer research & treatment.

[125]  O Orwar,et al.  Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. , 2000, Biophysical journal.