The generation of amplified spontaneous emission in high‐power CPA laser systems

An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high‐intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high‐intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high‐contrast front‐end design are derived regarding the necessary contrast improvement and the amplified “clean” output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high‐intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

[1]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[2]  A. Bloom Quantum Electronics , 1972, Nature.

[3]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[4]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[5]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[6]  M M Murnane,et al.  Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. , 1991, Optics letters.

[7]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[8]  Raymond J. Beach,et al.  Properties of Cr:LiSrAIF(6) crystals for laser operation. , 1994, Applied optics.

[9]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .

[10]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[11]  U. Keller,et al.  60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.

[12]  Ian N. Ross,et al.  The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers , 1997 .

[13]  I N Ross,et al.  Finite size compression gratings in a large aperture chirped pulse amplification laser system. , 1997, Applied optics.

[14]  A. Lagatsky,et al.  Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). , 1997, Optics letters.

[15]  Gerard Mourou,et al.  Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection , 1998 .

[16]  U. Keller,et al.  Efficient and tunable diode-pumped femtosecond Yb:glass lasers. , 1998, Optics letters.

[17]  K. Torizuka,et al.  Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser. , 1999, Optics letters.

[18]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[19]  Doris Ehrt,et al.  Preparation, structure, and properties of Yb3+FP laser glass , 2000, SPIE Optics + Photonics.

[20]  F. Balembois,et al.  Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material , 2001 .

[21]  H. Ebendorff-Heidepriem,et al.  Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses , 2001 .

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Niloy K. Dutta,et al.  Spectroscopic properties of Yb-doped silica glass , 2002 .

[24]  A. V. Kuznetsov,et al.  Oncological hadrontherapy with laser ion accelerators , 2002 .

[25]  Y. Izawa,et al.  High-power and high-contrast optical parametric chirped pulse amplification in β-BaB 2 O 4 crystal , 2003 .

[26]  Amplified spontaneous emission in a Ti:sapphire regenerative amplifier. , 2003, Applied optics.

[27]  J. Meyer-ter-Vehn,et al.  Influence of the laser prepulse on proton acceleration in thin-foil experiments. , 2004, Physical review letters.

[28]  V. Kochurikhin,et al.  Growth and Spectroscopic Study of Yb3+-Activated YVO4 Crystals , 2004 .

[29]  Joachim Hein,et al.  100-fs diode-pumped Yb:KGW mode-locked laser , 2004 .

[30]  Johan Petit,et al.  Laser emission with low quantum defect in Yb: CaGdAlO4. , 2005, Optics letters.

[31]  A. R. Sarmani,et al.  Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers. , 2005, Optics letters.

[32]  Olivier Albert,et al.  10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. , 2005, Optics letters.

[33]  H. Schonnagel,et al.  Double chirped-pulse-amplification laser: a way to clean pulses temporally. , 2005, Optics letters.

[34]  Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification. , 2007, Applied optics.

[35]  F. Träger Springer Handbook of Lasers and Optics , 2007 .

[36]  K. Kikuchi,et al.  Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. , 2007, Optics letters.

[37]  G. Mourou,et al.  Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. , 2008, Optics express.

[38]  S Yu Tenyakov,et al.  Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses. , 2008, Optics express.

[39]  Olivier Albert,et al.  Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening. , 2008, Optics letters.

[40]  Jake Bromage,et al.  Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses. , 2008, Optics express.

[41]  Patrice Camy,et al.  Yb:CaF2 — a new old laser crystal , 2009 .

[42]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[43]  Mikhail Kalashnikov,et al.  Limits of the temporal contrast for CPA lasers with beams of high aperture , 2009, Ultrafast Nonlinear Optics.

[44]  Todd Ditmire,et al.  Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. , 2010, Applied optics.

[45]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[46]  Chris J. Hooker,et al.  Improving coherent contrast of petawatt laser pulses. , 2011, Optics express.

[47]  Ferenc Krausz,et al.  Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology. , 2011, Optics letters.

[48]  J. Hein,et al.  Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser , 2011 .

[49]  V. L. Kalashnikov,et al.  High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. , 2011, Optics letters.

[50]  Valentin Petrov,et al.  Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses. , 2011, Optics letters.

[51]  Sebastian Keppler,et al.  Contrast improvement by prepulse suppression in cascaded amplifier cavities , 2011, Optics + Optoelectronics.

[52]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[53]  M C Kaluza,et al.  All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems. , 2012, Optics express.

[54]  Joachim Hein,et al.  Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF_2 between 20 °C and 200 °C and predictions on their influence on laser performance , 2012 .

[55]  Yuxin Leng,et al.  High-contrast 2.0 Petawatt Ti:sapphire laser system. , 2013, Optics express.

[56]  J. W. Yoon,et al.  Generation of high-contrast, 30 fs, 1.5 PW laser pulses , 2012, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[57]  F Rotermund,et al.  Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. , 2013, Optics letters.

[58]  Joachim Hein,et al.  High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS. , 2013, Optics letters.

[59]  P. Georges,et al.  High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator. , 2013, Optics letters.

[60]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[61]  J. Hein,et al.  Full characterization of the amplified spontaneous emission from a diode-pumped high-power laser system. , 2014, Optics express.

[62]  Joachim Hein,et al.  16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier. , 2014, Optics letters.

[63]  P. Georges,et al.  32-fs Kerr-lens mode-locked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser. , 2014, Optics letters.

[64]  Joachim Hein,et al.  Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm. , 2014, Optics express.

[65]  Joachim Hein,et al.  The all-diode-pumped laser system POLARIS – an experimentalist’s tool generating ultra-high contrast pulses with high energy , 2014, High Power Laser Science and Engineering.

[66]  Zach DeVito,et al.  Opt , 2017 .