Second Order Pre-Integrated Volume Rendering

In the field of Volume Rendering, the pre-integration of arbitrary transfer functions has certainly led to the most significant and convincing results both quality and performance wise, allowing high quality visualization on standard PC consumer graphics. By showing that the ideal scalar signal along the cast rays is better approximated by a succession of polynomial curves as opposed to linear segments, we propose a new method for pre-integrated volume rendering. This method is based on a second order polynomial interpolation of the scalar values, allowing it to converge more rapidly towards the integration of a volume reconstructed by a trilinear filter. This approach manages to capture the smoothness of the volume's details without the need of further ray resampling, and consequently succeeds in reducing the visual artefacts in comparison to previous techniques. Furthermore, we adapt an existing technique to compute our pre-integration tables using the GPU, thus making our approach suitable for transfer function manipulations.

[1]  James Arvo,et al.  Controlled precision volume integration , 1992, VVS.

[2]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[3]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[4]  Kwan-Liu Ma,et al.  High-quality lighting and efficient pre-integration for volume rendering , 2004, VISSYM'04.

[5]  Nelson L. Max,et al.  A High Accuracy Volume Renderer for Unstructured Data , 1998, IEEE Trans. Vis. Comput. Graph..

[6]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[7]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[8]  Bernd Hamann,et al.  Contouring Curved Quadratic Elements , 2003, VisSym.

[9]  Ivan Viola,et al.  Fast and Flexible High-Quality Texture Filtering With Tiled High-Resolution Filters , 2002, VMV.

[10]  Bernd Hamann,et al.  Ray casting curved-quadratic elements , 2004, VISSYM'04.

[11]  Thomas Ertl,et al.  A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[12]  Thomas Ertl,et al.  High-quality unstructured volume rendering on the PC platform , 2002, HWWS '02.

[13]  Martin Kraus,et al.  Hardware-based ray casting for tetrahedral meshes , 2003, IEEE Visualization, 2003. VIS 2003..

[14]  Robert Michael Kirby,et al.  Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  Ulrich Neumann,et al.  Accelerating Volume Reconstruction With 3D Texture Hardware , 1994 .

[17]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[18]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[19]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[20]  Simon Stegmaier,et al.  Exploiting frame-to-frame coherence for accelerating high-quality volume raycasting on graphics hardware , 2005, VIS 05. IEEE Visualization, 2005..

[21]  Russell H. Taylor,et al.  Rendering tetrahedral meshes with higher-order attenuation functions for digital radiograph reconstruction , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Nelson L. Max,et al.  Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.

[23]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[24]  Christian Rössl,et al.  Reconstruction of volume data with quadratic super splines , 2004, IEEE Transactions on Visualization and Computer Graphics.

[25]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998 .

[26]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .