Mutual synchronization of robots via estimated state feedback: a cooperative approach

In this paper, a controller that solves the problem of position synchronization of two (or more) robot systems, under a cooperative scheme, in the case when only position measurements are available, is presented. The synchronization controller consists of a feedback control law and a set of nonlinear observers. Coupling errors are introduced to create interconnections that render mutual synchronization of the robots. It is shown that the controller yields semiglobal exponential convergence of the synchronization closed-loop errors. Experimental results show, despite obvious model uncertainties, a good agreement with the predicted convergence.

[1]  Yunhui Liu,et al.  Cooperation control of multiple manipulators with passive joints , 1999, IEEE Trans. Robotics Autom..

[2]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[3]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[4]  H. Nijmeijer,et al.  Coordination of two robot manipulators based on position measurements only , 2001 .

[5]  Kosei Kitagaki,et al.  Decentralized adaptive control of multiple manipulators in co-operations , 1997 .

[6]  Charles R. Johnson Matrix theory and applications , 1990 .

[7]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[8]  Rajiv V. Dubey,et al.  Variable damping impedance control of a bilateral telerobotic system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[9]  J. Borenstein,et al.  Cross-coupling motion controller for mobile robots , 1993, IEEE Control Systems.

[10]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[11]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[12]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[13]  J. W. Humberston Classical mechanics , 1980, Nature.

[14]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[15]  Brad Paden,et al.  Globally asymptotically stable ‘PD+’ controller for robot manipulators , 1988 .

[16]  Rajiv Dubey,et al.  Variable damping impedance control of a bilateral telerobotic system , 1997 .

[17]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[18]  A.L. Fradkov,et al.  Self-synchronization and controlled synchronization , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[19]  Myung Jin Chung,et al.  Adaptive controller of a master-slave system for transparent teleoperation , 1998, J. Field Robotics.

[20]  H Henk Nijmeijer,et al.  Synchronization of Mechanical Systems , 2003 .

[21]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[22]  Michael Rosenblum,et al.  Synchronization and chaotization in interacting dynamical systems , 1995 .

[23]  Dong Sun,et al.  Adaptive synchronized control for coordination of two robot manipulators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[24]  A. G. de Jager,et al.  Grey-box modeling of friction: An experimental case-study , 1999, 1999 European Control Conference (ECC).