An Automata Theoretic Approach to the Zero-One Law for Regular Languages: Algorithmic and Logical Aspects

A zero-one language L is a regular language whose asymptotic probability converges to either zero or one. In this case, we say that L obeys the zero-one law. We prove that a regular language obeys the zero-one law if and only if its syntactic monoid has a zero element, by means of Eilenberg's variety theoretic approach. Our proof gives an effective automata characterisation of the zero-one law for regular languages, and it leads to a linear time algorithm for testing whether a given regular language is zero-one. In addition, we discuss the logical aspects of the zero-one law for regular languages.

[1]  Andreas Blass,et al.  A Zero-One Law for Logic with a Fixed-Point Operator , 1986, Inf. Control..

[2]  Jan Schwinghammer,et al.  Effciently Computing the Density of Regular Languages , 2004, LATIN.

[3]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[4]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[5]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[6]  Umberto Eco,et al.  Theory of Codes , 1976 .

[7]  Paul Gastin,et al.  A Survey on Small Fragments of First-Order Logic over Finite Words , 2008, Int. J. Found. Comput. Sci..

[8]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[9]  Phokion G. Kolaitis,et al.  Infinitary Logics and 0-1 Laws , 1992, Inf. Comput..

[10]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[11]  Phokion G. Kolaitis,et al.  0-1 Laws for Fragments of Existential Second-Order Logic: A Survey , 2000, MFCS.

[12]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[13]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[14]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[15]  Jean Berstel Sur la densité asymptotique de langages formels , 1972, ICALP.

[16]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[17]  P. Martin-Löf Probability theory on discrete semigroups , 1965 .