Metal dichalcogenide nanosheets: preparation, properties and applications.

Two-dimensional (2D) nanomaterials have received much attention in recent years, because of their unusual properties associated with their ultra-thin thickness and 2D morphology. Besides graphene which has aroused tremendous research interest, other types of 2D nanomaterials such as metal dichalcogenides have also been studied and applied in various applications including electronics, optoelectronics, energy storage devices, and so on. In this tutorial review, we will take MoS(2) as a typical example to introduce the latest research development of 2D inorganic nanomaterials with emphasis on their preparation methods, properties and applications.

[1]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[2]  Qiyuan He,et al.  Graphene-based materials: synthesis, characterization, properties, and applications. , 2011, Small.

[3]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[4]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[5]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[6]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[7]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[8]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[9]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[10]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[11]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[12]  Hagai Cohen,et al.  Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. , 2003, Journal of the American Chemical Society.

[13]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[14]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[15]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[16]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[17]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[18]  T. Ebbesen,et al.  Graphene in 3‐dimensions: Towards graphite origami , 1995 .

[19]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[20]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[21]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[22]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[23]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[24]  J. Wilcoxon,et al.  Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials , 2005 .

[25]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[26]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[27]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[28]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[29]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[30]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[31]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[32]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[33]  Reshef Tenne,et al.  New Route for Stabilization of 1T-WS2 and MoS2 Phases , 2011 .

[34]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[35]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[36]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[37]  K. Loh,et al.  Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films , 2007 .

[38]  Lev Rapoport,et al.  Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites , 2005 .

[39]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[40]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[41]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[42]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.

[43]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[44]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[45]  Fei Huang,et al.  Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes† , 2011 .

[46]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[47]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[48]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[49]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[50]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[51]  S. Morrison,et al.  Exfoliated MoS2 for stabilization and activation of Pt oxidation catalysts , 1991 .

[52]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[53]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[54]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[55]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[56]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[57]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[59]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[60]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[61]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[62]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[63]  R. Frindt,et al.  Scanning tunneling microscopy of single-layer MoS2 in water and butanol , 1992 .

[64]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[65]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[66]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[67]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[68]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[69]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[70]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[71]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[72]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[73]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[74]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.