Adaptive tetrahedral mesh generation by constrained centroidal voronoi‐delaunay tessellations for finite element methods

This article presents a tetrahedral mesh adaptivity algorithm for three-dimensional elliptic partial differential equations (PDEs) using finite element methods. The main issues involved are the mesh size and mesh quality, which have great influence on the accuracy of the numerical solution and computational cost. The first issue is addressed by a posteriori error estimator based on superconvergent gradient recovery. The second issue is solved by constrained centroidal Voronoi–Delaunay tessellations (CCVDT), which guarantees good quality tetrahedrons over a large class of mesh domains even, if the grid size varies a lot at any particular refinement level. The CCVDT enjoys the energy equidistribution property so that the errors are very well equidistributed with properly chosen sizing field (density function). And with this good property, a new refinement criteria is raised which is different from the traditional bisection refinement. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1633–1653, 2014

[1]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[2]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[3]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[4]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[5]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[6]  M. Gunzburger,et al.  Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .

[7]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[8]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[9]  Jie Chen,et al.  Linear finite element superconvergence on simplicial meshes , 2014, Math. Comput..

[10]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[11]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[12]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .

[13]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[14]  Nianyu Yi,et al.  The Superconvergent Cluster Recovery Method , 2010, J. Sci. Comput..

[15]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[16]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[17]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[18]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[19]  Xiang-Yang Li,et al.  Smoothing and cleaning up slivers , 2000, STOC '00.

[20]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[21]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[22]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[23]  Gustavo C. Buscaglia,et al.  OPTIMIZATION STRATEGIES IN UNSTRUCTURED MESH GENERATION , 1996 .

[24]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[25]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[26]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[27]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[28]  Qiang Du,et al.  Centroidal Voronoi Tessellation Algorithms for Image Compression, Segmentation, and Multichannel Restoration , 2006, Journal of Mathematical Imaging and Vision.

[29]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[30]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[31]  Yunqing Huang,et al.  Convergent Adaptive Finite Element Method Based on Centroidal Voronoi Tessellations and Superconvergence , 2011 .

[32]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[33]  Yunqing Huang,et al.  Centroidal Voronoi tessellation‐based finite element superconvergence , 2008 .

[34]  Weidong Zhao,et al.  Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi-Delaunay Triangulations , 2006, SIAM J. Sci. Comput..

[35]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[36]  Geir Horrigmoe Hybrid stress finite element model for non-linear shell problems , 1978 .

[37]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .