Particle Filters and Data Assimilation

State-space models can be used to incorporate subject knowledge on the underlying dynamics of a time series by the introduction of a latent Markov state process. A user can specify the dynamics of this process together with how the state relates to partial and noisy observations that have been made. Inference and prediction then involve solving a challenging inverse problem: calculating the conditional distribution of quantities of interest given the observations. This article reviews Monte Carlo algorithms for solving this inverse problem, covering methods based on the particle filter and the ensemble Kalman filter. We discuss the challenges posed by models with high-dimensional states, joint estimation of parameters and the state, and inference for the history of the state process. We also point out some potential new developments that will be important for tackling cutting-edge filtering applications.

[1]  F. Gland,et al.  Large sample asymptotics for the ensemble Kalman filter , 2009 .

[2]  Nick Whiteley,et al.  Forest resampling for distributed sequential Monte Carlo , 2014, Stat. Anal. Data Min..

[3]  Rami Atar,et al.  Exponential decay rate of the fllter's dependence on the initial distribution , 2009 .

[4]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[5]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[6]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[7]  J. Olsson,et al.  Efficient particle-based online smoothing in general hidden Markov models : the PaRIS algorithm , 2014 .

[8]  Andrew J Majda,et al.  Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation , 2015, 1507.08319.

[9]  임규호,et al.  Optimal sites for supplementary weather observations , 2011 .

[10]  A. Beskos,et al.  A Stable Particle Filter in High-Dimensions , 2014, 1412.3501.

[11]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[12]  Sumeetpal S. Singh,et al.  Blocking strategies and stability of particle Gibbs samplers , 2015, 1509.08362.

[13]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[14]  Christophe Andrieu,et al.  Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.

[15]  Sebastian Reich,et al.  A Hybrid Ensemble Transform Particle Filter for Nonlinear and Spatially Extended Dynamical Systems , 2015, SIAM/ASA J. Uncertain. Quantification.

[16]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[17]  Hans R. Künsch,et al.  Localizing the Ensemble Kalman Particle Filter , 2016, 1605.05476.

[18]  Lars Nerger,et al.  Software for ensemble-based data assimilation systems - Implementation strategies and scalability , 2013, Comput. Geosci..

[19]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[20]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[21]  Laurent E. Calvet,et al.  Robust Filtering , 2012 .

[22]  Fredrik Gustafsson,et al.  Particle Filters , 2015, Encyclopedia of Systems and Control.

[23]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[24]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[25]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[26]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[27]  H. Kunsch,et al.  Bridging the ensemble Kalman and particle filters , 2012, 1208.0463.

[28]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[29]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[30]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[31]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[32]  Sebastian Reich,et al.  A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..

[33]  P. Fearnhead Using Random Quasi-Monte-Carlo Within Particle Filters, With Application to Financial Time Series , 2005 .

[34]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[35]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[36]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[37]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[38]  B. Rozovskii,et al.  The Oxford Handbook of Nonlinear Filtering , 2011 .

[39]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[40]  R. Bannister A review of operational methods of variational and ensemble‐variational data assimilation , 2017 .

[41]  Pierre E. Jacob,et al.  Path storage in the particle filter , 2013, Statistics and Computing.

[42]  P. Moral,et al.  On Feynman-Kac and particle Markov chain Monte Carlo models , 2014 .

[43]  Leonhard Held,et al.  Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data , 2009, Stat. Comput..

[44]  Anthony Lee,et al.  Pseudo-marginal Metropolis--Hastings using averages of unbiased estimators , 2016 .

[45]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[46]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[47]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[48]  Adam M. Johansen,et al.  SMCTC : sequential Monte Carlo in C++ , 2009 .

[49]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[50]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[51]  Loukia Meligkotsidou,et al.  Augmentation schemes for particle MCMC , 2014, Statistics and Computing.

[52]  Sumeetpal S. Singh,et al.  On particle Gibbs sampling , 2013, 1304.1887.

[53]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[54]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[55]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[56]  Pete Bunch,et al.  Approximations of the Optimal Importance Density Using Gaussian Particle Flow Importance Sampling , 2014, 1406.3183.

[57]  G. Peters,et al.  Monte Carlo Approximations for General State-Space Models , 1998 .

[58]  A. Doucet,et al.  The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[59]  Aurélien Garivier,et al.  Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.

[60]  P. Fearnhead MCMC, sufficient statistics and particle filters. , 2002 .

[61]  O. Papaspiliopoulos,et al.  Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.

[62]  P. Fearnhead,et al.  Particle Metropolis adjusted Langevin algorithms for state-space models , 2014, 1402.0694.

[63]  Fredrik Lindsten,et al.  Particle gibbs with ancestor sampling , 2014, J. Mach. Learn. Res..

[64]  Anders Nielsen,et al.  Estimation of time-varying selectivity in stock assessments using state-space models , 2014 .

[65]  Andrew J Majda,et al.  Concrete ensemble Kalman filters with rigorous catastrophic filter divergence , 2015, Proceedings of the National Academy of Sciences.

[66]  R. Douc,et al.  Long-term stability of sequential Monte Carlo methods under verifiable conditions , 2012, 1203.6898.

[67]  P. Fearnhead,et al.  Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State–Space Models With Linear Computational Cost , 2013, 1306.0735.

[68]  Richard A. Frazin,et al.  Tomographic Imaging of Dynamic Objects With the Ensemble Kalman Filter , 2009, IEEE Transactions on Image Processing.

[69]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[70]  C. Paciorek,et al.  Sequential Monte Carlo Methods in the nimble R Package , 2017, 1703.06206.

[71]  Dan Crisan,et al.  Particle Filters - A Theoretical Perspective , 2001, Sequential Monte Carlo Methods in Practice.

[72]  Fredrik Lindsten,et al.  Coupling of Particle Filters , 2016, 1606.01156.

[73]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[74]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[75]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[76]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[77]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[78]  R. Douc,et al.  Uniform Ergodicity of the Particle Gibbs Sampler , 2014, 1401.0683.

[79]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[80]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[81]  Lizhong Xu,et al.  Sequential quasi-Monte Carlo filter for visual object tracking , 2012, World Automation Congress 2012.

[82]  Eric Moulines,et al.  On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..

[83]  Christophe Andrieu,et al.  Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.

[84]  Johan Dahlin,et al.  Particle Metropolis–Hastings using gradient and Hessian information , 2013, Statistics and Computing.

[85]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[86]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[87]  Nicholas G. Polson,et al.  Practical filtering with sequential parameter learning , 2008 .

[88]  Daniel Sanz-Alonso,et al.  Importance Sampling and Necessary Sample Size: An Information Theory Approach , 2016, SIAM/ASA J. Uncertain. Quantification.

[89]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[90]  P. Moral,et al.  Sequential Monte Carlo samplers for rare events , 2006 .

[91]  Andras Fulop,et al.  Efficient Learning via Simulation: A Marginalized Resample-Move Approach , 2012 .