Investigation of strain rate sensitivity of Gum Metal under tension using digital image correlation

[1]  M. Zubko,et al.  Anisotropy of Gum Metal analysed by ultrasonic measurement and digital image correlation , 2020, Materials Science and Technology.

[2]  K. Kowalczyk-Gajewska,et al.  A finite strain elastic-viscoplastic model of Gum Metal , 2019, International Journal of Plasticity.

[3]  M. Maj,et al.  Stress field determination based on digital image correlation results , 2019, Archives of Civil and Mechanical Engineering.

[4]  E. Pieczyska,et al.  Thermomechanical Studies of Yielding and Strain Localization Phenomena of Gum Metal under Tension , 2018, Materials.

[5]  M. Maj,et al.  Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results , 2018 .

[6]  H. García,et al.  One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution , 2018, Materials.

[7]  E. Pieczyska,et al.  Infrared thermography applied for experimental investigation of thermomechanical couplings in Gum Metal , 2017 .

[8]  E. Lavernia,et al.  Effect of strain rate on the mechanical properties of a gum metal with various microstructures , 2017 .

[9]  Y. Yang,et al.  Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys. , 2016, Physical review letters.

[10]  S. Miyazaki,et al.  Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys , 2016 .

[11]  C. Tasan,et al.  On the mechanism of {332} twinning in metastable β titanium alloys , 2016 .

[12]  E. Pieczyska,et al.  Gum Metal—unique properties and results of initial investigation of a new titanium alloy—extended paper , 2016 .

[13]  D. Seidman,et al.  Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation , 2016 .

[14]  C. Tasan,et al.  Deformation mechanism of ω-enriched Ti–Nb-based gum metal: Dislocation channeling and deformation induced ω–β transformation , 2015 .

[15]  S. Miyazaki,et al.  Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys , 2015 .

[16]  C. Tasan,et al.  Damage resistance in gum metal through cold work-induced microstructural heterogeneity , 2015, Journal of Materials Science.

[17]  D. Dye,et al.  Superelastic load cycling of Gum Metal , 2015 .

[18]  D. Dye,et al.  Nanoprecipitation in a beta-titanium alloy , 2015 .

[19]  Nasser Soltani,et al.  In situ identification of elastic–plastic strain distribution in a microalloyed transformation induced plasticity steel using digital image correlation , 2014 .

[20]  S. Miyazaki,et al.  Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy , 2013 .

[21]  M. Ferry,et al.  Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route , 2013 .

[22]  C. Tasan,et al.  On dislocation involvement in Ti–Nb gum metal plasticity , 2013 .

[23]  D. Chrzan,et al.  The mechanism of strength and deformation in Gum Metal , 2013 .

[24]  L. Catherine Brinson,et al.  Local and global strains and strain ratios in shape memory alloys using digital imagecorrelation , 2013 .

[25]  T. Nakano,et al.  Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects , 2011 .

[26]  Di Zhang,et al.  Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy , 2011 .

[27]  Y. Murakami,et al.  Transmission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal , 2010 .

[28]  H. Sehitoglu,et al.  Local transformation strain measurements in precipitated NiTi single crystals , 2008 .

[29]  G. Ravichandran,et al.  Stress-induced martensitic phase transformation in thin sheets of Nitinol , 2007 .

[30]  S. Kuramoto,et al.  Elastic properties of Gum Metal , 2006 .

[31]  S. Kuramoto,et al.  Designing New Structural Materials Using Density Functional Theory: The Example of Gum Metal^TM , 2006 .

[32]  S. Kuramoto,et al.  Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy , 2006 .

[33]  Taketo Sakuma,et al.  Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism , 2003, Science.

[34]  P. Balland,et al.  Experimental study of Portevin–Le Châtelier bands on tensile and plane strain tensile tests , 2018 .

[35]  T. Nakano,et al.  ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties , 2013 .

[36]  Y. Murakami,et al.  Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy , 2009 .