Sensitivities of marine carbon fluxes to ocean change

Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is ≈1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial–interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.

[1]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[2]  B. Delille,et al.  Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments , 2005 .

[3]  Wallace S. Broecker,et al.  The carbon cycle and atmospheric CO2 , 1986 .

[4]  R. Geider,et al.  ELEVATED ATMOSPHERIC CARBON DIOXIDE INCREASES ORGANIC CARBON FIXATION BY EMILIANIA HUXLEYI (HAPTOPHYTA), UNDER NUTRIENT‐LIMITED HIGH‐LIGHT CONDITIONS 1 , 2005 .

[5]  B. Delille,et al.  Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi , 2005 .

[6]  J. Karstensen,et al.  The seasonal pCO2 cycle at 49°N/16.5°W in the northeastern Atlantic Ocean and what it tells us about biological productivity , 2008 .

[7]  U. Riebesell,et al.  Enhanced biological carbon consumption in a high CO2 ocean , 2006, Nature.

[8]  Julia C. Hargreaves,et al.  Assessing the potential long-term increase of oceanic fossil fuel CO 2 uptake due to CO 2 -calcification feedback , 2007 .

[9]  W. Wiebe,et al.  Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria , 2001 .

[10]  C. Sweeney,et al.  Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef , 2000 .

[11]  K. Sand‐Jensen,et al.  CO2 increases oceanic primary production , 1997, Nature.

[12]  A. Hirst,et al.  Long‐term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming , 2003 .

[13]  S. Doney,et al.  Modelling regional responses by marine pelagic ecosystems to global climate change , 2002 .

[14]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[15]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[16]  Mojib Latif,et al.  Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations , 2005 .

[17]  K. Arrigo Carbon cycle: Marine manipulations , 2007, Nature.

[18]  Cecilie Mauritzen,et al.  Dilution of the Northern North Atlantic Ocean in Recent Decades , 2005, Science.

[19]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[20]  C. Page,et al.  Ocean acidification due to increasing atmospheric carbon dioxide , 2005 .

[21]  M. Brzezinski,et al.  A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean , 2002 .

[22]  L. Legendre,et al.  Pelagic food webs: Responses to environmental processes and effects on the environment , 2002, Ecological Research.

[23]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[24]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[25]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[26]  Richard J. Matear,et al.  Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2 , 2008, Proceedings of the National Academy of Sciences.

[27]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[28]  E. Maier‐Reimer,et al.  Glacial pCO2 Reduction by the World Ocean: Experiments With the Hamburg Carbon Cycle Model , 1991 .

[29]  Alfred S. McEwen,et al.  Icelandic analogs to Martian flood lavas , 2004 .

[30]  J. Morison,et al.  Temperature difference across the Lomonosov Ridge: Implications for the Atlantic Water circulation in the Arctic Ocean , 2005 .

[31]  Olivier Aumont,et al.  The fate of pelagic CaCO 3 production in a high CO 2 ocean: a model study , 2007 .

[32]  Jens Schröter,et al.  Modelling carbon overconsumption and the formation of extracellular particulate organic carbon , 2007 .

[33]  M. Heimann,et al.  Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget , 2002 .

[34]  C. McClain,et al.  Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability , 2001 .

[35]  U. Riebesell,et al.  Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. , 2002 .

[36]  V. Smetacek,et al.  Carbon dioxide limitation of marine phytoplankton growth rates , 1993, Nature.

[37]  S. Shapiro,et al.  Seismogenic plane of the northern Andean Subduction Zone from aftershocks of the Antofagasta (Chile) 1995 earthquake , 2002 .

[38]  F. Joos,et al.  Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model , 2009 .

[39]  Michael J. Follows,et al.  Preformed phosphate, soft tissue pump and atmospheric CO 2 , 2005 .

[40]  Gerold Wefer,et al.  Use of proxies in paleoceanography : examples from the South Atlantic , 1999 .

[41]  F. Joos,et al.  Global warming and marine carbon cycle feedbacks on future atmospheric CO2 , 1999, Science.

[42]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[43]  Ulf Riebesell,et al.  Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison , 1999 .

[44]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[45]  W. Broecker,et al.  The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present: Sundquist/The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present , 1985 .

[46]  F. Morel,et al.  Comment on "Phytoplankton Calcification in a High-CO2 World" , 2008, Science.

[47]  Andreas Oschlies,et al.  Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business‐as‐usual CO2 emission scenario until year 4000 AD , 2008 .

[48]  Jorge L. Sarmiento,et al.  Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming , 1996, Science.

[49]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[50]  M. Denis,et al.  Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation , 2003 .

[51]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[52]  A. Oschlies,et al.  Simulated 21st century's increase in oceanic suboxia by CO2‐enhanced biotic carbon export , 2008 .

[53]  Scott C. Doney,et al.  Response of ocean ecosystems to climate warming , 2004 .

[54]  Ilana Berman-Frank,et al.  Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium , 2007 .

[55]  J. Toggweiler,et al.  Representation of the carbon cycle in box models and GCMs: 1. Solubility pump , 2003 .

[56]  U. Sommer,et al.  Changes in biogenic carbon flow in response to sea surface warming , 2009, Proceedings of the National Academy of Sciences.

[57]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[58]  Gurvan Madec,et al.  Potential impact of climate change on marine export production , 2001 .

[59]  A. Hirst,et al.  Climate change feedback on the future oceanic CO2 uptake , 1999 .

[60]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[61]  H. Schellnhuber,et al.  Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes , 2009, Proceedings of the National Academy of Sciences.

[62]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[63]  Christoph Heinze,et al.  Simulating oceanic CaCO3 export production in the greenhouse , 2004 .

[64]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[65]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[66]  Christopher B. Field,et al.  Biospheric Primary Production During an ENSO Transition , 2001, Science.

[67]  J. Toggweiler,et al.  The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean , 2006 .

[68]  Anja Engel,et al.  Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton , 2002 .

[69]  Ulf Riebesell,et al.  Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium , 2007 .

[70]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[71]  B. Delille,et al.  Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment , 2004 .

[72]  Fei-xue Fu,et al.  CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry , 2007 .

[73]  J. Marotzke,et al.  Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. , 2007, Science.

[74]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[75]  Andrew J. Watson,et al.  Climatological Mean and Decadal Change in Surface Ocean Pco(2), and Net Sea-Air Co2 Flux Over the Global Oceans (Vol 56, Pg 554, 2009) , 2009 .

[76]  Timothy P. Boyer,et al.  Warming of the world ocean, 1955–2003 , 2005 .

[77]  U. Passow Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa? , 2004 .

[78]  L. Legendre,et al.  Biogenic carbon cycling in the upper ocean: effects of microbial respiration. , 2001, Science.

[79]  J. Karstensen,et al.  Seasonal cycle of O2 and pCO2 in the central Labrador Sea: Atmospheric, biological, and physical implications , 2008 .

[80]  S. Cairns,et al.  Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? , 2006 .

[81]  Toby Tyrrell,et al.  Phytoplankton Calcification in a High-CO2 World , 2008, Science.

[82]  S. Levitus,et al.  Warming of the World Ocean , 2000 .

[83]  Fei-xue Fu,et al.  Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae) , 2008 .

[84]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[85]  M. N. Hill,et al.  The sea: ideas and observations on progress in the study of the seas , 1963 .

[86]  Dieter Wolf-Gladrow,et al.  Total alkalinity: The explicit conservative expression and its application to biogeochemical processes , 2007 .

[87]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[88]  J. Jaubert,et al.  Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral , 2003 .

[89]  U. Riebesell,et al.  Polysaccharide aggregation as a potential sink of marine dissolved organic carbon , 2004, Nature.