Oversampled phase tracking in digital communications with large excess bandwidth

This paper deals with the on-line carrier phase estimation in a digital receiver. We consider a Brownian phase evolution in a data aided scenario. The proposed study uses an oversampled signal model after matched filtering, leading to a coloured reception noise and a non-stationary power signal. The contribution of this paper is twofold. First, we derive the Bayesian Cramer-Rao bound for this estimation problem. Then, based on a state-space model formulation of the problem, we propose an extended Kalman filter to approach this lower bound for a BOC shaping pulse. Our numerical results illustrate the gain resulting from the use of an oversampled version of the received signal to estimate the phase offset, obtaining better performances than using a classical synchronizer.

[1]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[2]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[3]  Gerd Ascheid,et al.  Adaptive synchronization and channel parameter estimation using an extended Kalman filter , 1989, IEEE Trans. Commun..

[4]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[5]  Riaz A. Usmani,et al.  Inversion of Jacobi's tridiagonal matrix , 1994 .

[6]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[7]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[8]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1996, IEEE Trans. Signal Process..

[9]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[10]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[11]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[12]  Pierre-Olivier Amblard,et al.  Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops , 2003, Signal Process..

[13]  Zhi-Gang Cao,et al.  GPS carrier phase measurement method based on data transition detection in high dynamic circumstance , 2000, WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420).

[14]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[15]  Umberto Mengali,et al.  The modified Cramer-Rao bound in vector parameter estimation , 1998, IEEE Trans. Commun..

[16]  Benoit Geller,et al.  On the Hybrid Cramér Rao Bound and Its Application to Dynamical Phase Estimation , 2008, IEEE Signal Processing Letters.

[17]  Peter James Kootsookos,et al.  An extended Kalman filter for demodulation of polynomial phase signals , 1998, IEEE Signal Processing Letters.

[18]  Benoit Geller,et al.  Bayesian CramÉr-Rao bound for dynamical phase offset estimation , 2007, 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications.

[19]  L. Ros,et al.  On-line Bayesian CraméR-Rao bound for oversampled dynamical phase offset estimation , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[20]  Laurent Ros,et al.  Extended Kalman Filter for Oversampled Dynamical Phase Offset Estimation , 2009, 2009 IEEE International Conference on Communications.

[21]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[22]  William Moran,et al.  Cramer-Rao lower bounds for QAM phase and frequency estimation , 2001, IEEE Trans. Commun..

[23]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  J. Barbot,et al.  Analytic and Asymptotic Analysis of Bayesian CramÉr–Rao Bound for Dynamical Phase Offset Estimation , 2008, IEEE Transactions on Signal Processing.

[27]  William G. Cowley,et al.  Phase and frequency estimation for PSK packets: bounds and algorithms , 1996, IEEE Trans. Commun..

[28]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[29]  Umberto Mengali,et al.  Synchronization Techniques for Digital Receivers , 1997, Applications of Communications Theory.