A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes

AbstractA novel room-temperature hydrogen sensor with improved performance has been developed and tested. The detection of hydrogen usinganodic TiO 2 nanotubes is significantly enhanced by employing Pd nanoparticles in the system due to Schottky barrier. The morphological,chemical and electrochemical properties of the Pd/TiO 2 nanocomposite materials were characterized using scanning electron microscopy (SEM),X-ray diffraction and current–voltage measurements. The performance of this hydrogen sensing material has been evaluated in air. The result hasdemonstrated that it is capable of providing fast response and selective detection with good reproducibility and short recovery time at roomtemperature. The detection was observed to be non-inference by the presence of other gases such as CO 2 ,CH 4 and NH 3 , which could be veryuseful in real-to-life applications.& 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved. Keywords: B. Nanocomposite; D. TiO 2 nanotubes; Pd nanoparticles; Hydrogen sensor

[1]  Makoto Egashira,et al.  H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode , 2007 .

[2]  F. Ren,et al.  Effect of Coated Platinum Thickness on Hydrogen Detection Sensitivity of Graphene-Based Sensors , 2011 .

[3]  M. Kemell,et al.  Gas Sensor using Anodic TiO2 Thin Film for Monitoring Hydrogen , 2012 .

[4]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[5]  Lixian Sun,et al.  Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect , 2007 .

[6]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[7]  S. Yao,et al.  A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications , 2010 .

[8]  Tzu-Ching Lin,et al.  A novel technique to fabricate horizontally aligned CNT nanostructure film for hydrogen gas sensing , 2011 .

[9]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[10]  Wojtek Wlodarski,et al.  Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors , 2007 .

[11]  Orhan Aydin,et al.  Wind energy–hydrogen storage hybrid power generation , 2001 .

[12]  Q. Li,et al.  High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. , 2013, Nanoscale.

[13]  Z. Öztürk,et al.  Fabrication and gas sensing properties of C-doped and un-doped TiO2 nanotubes , 2014 .

[14]  Qiang Liu,et al.  Hydrogen Sensing with Ni-Doped TiO2 Nanotubes , 2013, Sensors.

[15]  Tao Ning,et al.  Response time and mechanism of Pd modified TiO2 gas sensor , 2014 .

[16]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[17]  P. Kamat,et al.  Disassembly, Reassembly, and Photoelectrochemistry of Etched TiO2 Nanotubes , 2009 .

[18]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[19]  Sang Min Lee,et al.  Enhanced ethanol sensing properties of TiO2 nanotube sensors , 2012 .

[20]  D. Meng,et al.  Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires , 2014 .

[21]  Zafer Ziya Öztürk,et al.  Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor , 2010 .

[22]  Jason L. Johnson,et al.  Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks , 2010, Advanced materials.

[23]  C. Sarkar,et al.  Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection , 2013 .

[24]  Y. Shimizu,et al.  H2 sensing properties of diode-type gas sensors fabricated with Ti- and/or Nb-based materials , 2009 .

[25]  Q. Xue,et al.  Hydrogen gas sensing properties of Pd/a-C:Pd/SiO2/Si structure at room temperature , 2013 .

[26]  S. Rahbarpour,et al.  Diode type Ag–TiO2 hydrogen sensors , 2013 .

[27]  Makoto Egashira,et al.  H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode , 2003 .

[28]  H. Hedman,et al.  A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization , 2013 .

[29]  Wolfgang Kollmann,et al.  PDF modeling and analysis of thermal NO formation in turbulent nonpremixed hydrogen-air jet flames , 1992 .

[30]  L. Wei,et al.  Formation of TiO2 nanotubes via anodization and potential applications for photocatalysts, biomedical materials, and photoelectrochemical cell , 2011 .

[31]  Daniel J. Benac,et al.  Reducing the Risk of High Temperature Hydrogen Attack (HTHA) Failures , 2012, Journal of Failure Analysis and Prevention.

[32]  S. K. Hazra,et al.  Porous Titania Thin Films Grown by Anodic Oxidation for Hydrogen Sensors , 2006 .

[33]  Thomas Hirsch,et al.  Hydrogen sensor based on a graphene - palladium nanocomposite , 2011 .

[34]  S. Ramaprabhu,et al.  Hybrid carbon nanostructured ensembles as chemiresistive hydrogen gas sensors , 2011 .

[35]  Makoto Egashira,et al.  High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd , 2002 .

[36]  Zhi Chen,et al.  High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide , 2009 .