The d2-M(NR)2 Fragment, High Valent and Low Valent Organometallic Equivalents, and an Unusual Mode of Ethylene Complexation

We report approximate molecular orbital calculations on models of the ethylene complex W(NMes)2(PMe3)2(η2-C2H4) 1. The ethylene unit in 1 is oriented perpendicular to the equatorial plane – an unusual orientation for trigonal bipyramidal L4M-(η2-C2H4) complexes. In order to understand the bonding in 1, the tungsten fragment W(NR)2L2 is discussed in some detail and we compare the “high valent” ethylene complex 1 and the “low valent” olefin complex Fe(CO)4(η2-C2H4). An analysis of π-bonding shows that the metal nitrogen bond in the cis,-[M(NR)2] unit is less than a triple bond, and the d2-[M(NR)L2] fragment is more like a 16 than an 18 valence electron fragment. The nature of the occupied d-orbital explains the opening of the angle E–M–E in trigonal bipyramidal complexes d2-cis-M(E)2L3. Both C2v fragments d2-W(NR)2L2 and d8-Fe(CO)4 have characteristic frontier orbitals, qualitatively similar to the frontier orbitals of CH2. These orbitals guide the ethylene ligand into or out of the equatorial plane. The general analysis leads to the conclusion that dn (n > O) “high valent” complex fragments are actually better back-bonding donors for π-acidic ligands. For 1, we detect also another mininum on the energy surface – the olefin ligand is now oriented parallel to the equatorial plane. This raises the fascinating possibilities of the existence of multiple conformational minima for some transition metal ethylene complexes.

[1]  S. Bott,et al.  Synthesis and structural characterization of niobium(IV) amido complexes and a niobium(V) bis(imido) complex , 1995 .

[2]  Jörg Sundermeyer,et al.  Diimidokomplexe [M(NR)2(PMe3)2(L)] des vierwertigen Molybdäns und Wolframs: Struktur, Moleküldynamik und Aktivierung π‐acider Liganden , 1994 .

[3]  G. Jin,et al.  Heterodimetallic Complexes with an Unbridged, Polar Metal–Metal Bond , 1994 .

[4]  M. Herberhold,et al.  Heterodimetallkomplexe mit unverbrückter, polarer Metall‐Metall‐Bindung , 1994 .

[5]  R. Schrock,et al.  Synthesis of d2 complexes that contain tungsten [W(NAr)2] and rhenium [Re(NAr)2] cores, SCF-X.alpha.-SW calculations, and a discussion of the MCp2/M'(NR)2 isolobal relationship , 1993 .

[6]  Jennifer C. Green,et al.  Study of metal-ligand multiple bonding in osmium and iridium imido complexes: evidence for the cyclopentadienyl-imido analogy , 1992 .

[7]  Thomas R. Cundari,et al.  Transition Metal Imido Complexes , 1992 .

[8]  M. Chisholm The coordination chemistry of dinuclear molybdenum(III) and tungsten(III): d3-d3 dimers , 1990 .

[9]  D. Wigley,et al.  Bis(phenylimido) complexes of niobium and tantalum prepared by .alpha.-hydrogen abstraction reactions , 1990 .

[10]  J. Burdett,et al.  Is there an effective atomic number rule for adsorption on surfaces , 1990 .

[11]  R. Schrock,et al.  Synthesis and reactions of tungsten(IV) bis(imido) complexes: relatives of bent metallocenes , 1990 .

[12]  D. Proserpio,et al.  MO theory made visible , 1990 .

[13]  J. Lichtenhan,et al.  Synthesis of molybdenum and tungsten silylimido complexes. Structure of a five-coordinate bis(silylimido) complex , 1990 .

[14]  G. Wilkinson,et al.  t-Butylimido complexes of chromium. X-ray crystal structures of Cr(NBut) 2(PMe2Ph)Cl2 and [Cr(NBut)2(C5H4N)2(η1- O3SCF3)]O3SCF3 , 1990 .

[15]  J. Fackler Metal-Metal Bonds and Clusters in Chemistry and Catalysis , 1990, Industry-University Cooperative Chemistry Program Symposia.

[16]  D. Stephan Early-late heterobimetallics , 1989 .

[17]  G. Wilkinson,et al.  t-Butylimido compounds of rhenium. X-ray crystal structures of [(ButN)2Re(μ-NBut)]2, (ButN)2ReCl3, (ButN)2ReCl2C6H5, (ButN)3Re(OSiMe3) and (ButN)3ReCl , 1989 .

[18]  S. Perrier,et al.  Cis- and trans-dioxo complexes of chlororuthenium(VI) , 1988 .

[19]  M. Bruce Complexes containing heteronuclear metal—metal bonds. Some recent advances 1982–83 , 1985 .

[20]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[21]  F. Stone Metal‐Carbon and Metal‐Metal Multiple Bonds as Ligands in Transition‐Metal Chemistry: The Isolobal Connection , 1984 .

[22]  F. A. Stone Metall‐Kohlenstoff‐ und Metall‐Metall‐Mehrfachbindungen als Liganden in der Übergangsmetallchemie: Die Isolobal‐Beziehung , 1984 .

[23]  M. Bruce Complexes containing heteronuclear metal—metal bonds. Some recent advances 1982–83: A. Compounds containing two different transition metals (excluding mixed-metal clusters) , 1983 .

[24]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .

[25]  W. A. Nugent,et al.  Transition metal complexes containing organoimido (nr) and related ligands , 1980 .

[26]  R. Hoffmann,et al.  Ethylene complexes. Bonding, rotational barriers, and conformational preferences , 1979 .

[27]  R. Hoffmann,et al.  Some hydrido-bridged transition-metal dimers and their unsupported analogs. Speculations on pentuple bonding and pentuple bridging , 1979 .

[28]  R. Hoffmann,et al.  Tetrahedral and other M2L6 transition metal dimers , 1976 .

[29]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[30]  Roald Hoffmann,et al.  Boron Hydrides: LCAO—MO and Resonance Studies , 1962 .

[31]  W. Lipscomb,et al.  Theory of Polyhedral Molecules. III. Population Analyses and Reactivities for the Carboranes , 1962 .

[32]  W. Lipscomb,et al.  Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation , 1962 .

[33]  A. Walsh The structures of ethylene oxide, cyclopropane, and related molecules , 1949 .

[34]  A. D. WALSH,et al.  Structures of Ethylene Oxide and Cyclopropane , 1947, Nature.