Quantum from Principles

Quantum theory was discovered in an adventurous way, under the urge to solve puzzles—like the spectrum of the blackbody radiation—that haunted the physics community at the beginning of the 20th century. It soon became clear, though, that quantum theory was not just a theory of specific physical systems, but rather a new language of universal applicability. Can this language be reconstructed from first principles? Can we arrive at it from logical reasoning, instead of ad hoc guesswork? A positive answer was provided in Phys Rev A, 81:062348, 2010 [34], Phys Rev A, 84:012311, 2011 [26], where we put forward six principles that identify quantum theory uniquely in a broad class of theories. We first defined a class of “theories of information”, constructed as extensions of probability theory in which events can be connected into networks. In this framework, we formulated the six principles as rules governing the control and the accessibility of information. Directly from these rules, we reconstructed a number of quantum information features, and eventually, the whole Hilbert space framework. In short, our principles characterize quantum theory as the theory of information that allows for maximal control of randomness.

[1]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[2]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[4]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[5]  Bob Coecke,et al.  Current research in operational quantum logic : algebras, categories, languages , 2000 .

[6]  Bob Coecke,et al.  Terminality implies non-signalling , 2014, QPL.

[7]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[8]  Raymond Lal,et al.  Causal Categories: Relativistically Interacting Processes , 2011, 1107.6019.

[9]  Giulio Chiribella,et al.  Quantum Theory, Namely the Pure and Reversible Theory of Information , 2012, Entropy.

[10]  G. D’Ariano Philosophy of Quantum Information and Entanglement: Probabilistic theories: What is special about Quantum Mechanics? , 2008, 0807.4383.

[11]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[12]  M. Caponigro Quantum Mechanics as Quantum Information , 2007 .

[13]  C. Fuchs Quantum mechanics as quantum information, mostly , 2003 .

[14]  William K. Wootters,et al.  Limited Holism and Real-Vector-Space Quantum Theory , 2010, 1005.4870.

[15]  H. Barnum,et al.  Ensemble Steering, Weak Self-Duality, and the Structure of Probabilistic Theories , 2009, 0912.5532.

[16]  Christopher A. Fuchs,et al.  Coming of Age With Quantum Information: Notes on a Paulian Idea , 2011 .

[17]  Alexander Wilce,et al.  Conjugates, Filters and Quantum Mechanics , 2012, Quantum.

[18]  Lucien Hardy,et al.  A formalism-local framework for general probabilistic theories, including quantum theory , 2010, Mathematical Structures in Computer Science.

[19]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[20]  G. Ludwig,et al.  Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien , 1964 .

[21]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[22]  Giulio Chiribella,et al.  Dilation of states and processes in operational-probabilistic theories , 2014, QPL.

[23]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[24]  Giacomo Mauro D'Ariano How to Derive the Hilbert‐Space Formulation of Quantum Mechanics From Purely Operational Axioms , 2006 .

[25]  Bob Coecke,et al.  Deep Beauty: A Universe of Processes and Some of Its Guises , 2010, 1009.3786.

[26]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[27]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[28]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[29]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[30]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[31]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[32]  I. Segal Irreducible representations of operator algebras , 1947 .

[33]  D. Dieks Communication by EPR devices , 1982 .

[34]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[35]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[36]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[37]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[38]  Howard Barnum,et al.  Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.

[39]  Alexander Wilce,et al.  Conjugates, Correlation and Quantum Mechanics , 2012 .

[40]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[41]  George W. Mackey,et al.  Quantum Mechanics and Hilbert Space , 1957 .

[42]  J. Skilling,et al.  Origin of complex quantum amplitudes and Feynman's rules , 2009, 0907.0909.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[44]  H. Araki A Characterization of the State Space of Quantum Mechanics , 1980 .

[45]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .

[46]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[47]  Gilles Brassard,et al.  Is information the key? , 2005 .

[48]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[49]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[50]  S. Lane Categories for the Working Mathematician , 1971 .

[51]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[52]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[53]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[54]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[55]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[56]  Christopher A. Fuchs,et al.  Quantum Foundations in the Light of Quantum Information , 2001 .

[57]  Abner Shimony,et al.  The logic of quantum mechanics , 1981 .

[58]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[59]  H. Barnum,et al.  Teleportation in General Probabilistic Theories , 2008, 0805.3553.

[60]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[61]  J. M. Jauch,et al.  On the Structure of Quantal Proposition Systems , 1975 .