Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.

New opportunities for the conversion of glycerol into value-added chemicals have emerged in recent years as a result of glycerol's unique structure, properties, bioavailability, and renewability. Glycerol is currently produced in large amounts during the transesterification of fatty acids into biodiesel and as such represents a useful by-product. This paper provides a comprehensive review and critical analysis on the different reaction pathways for catalytic conversion of glycerol into commodity chemicals, including selective oxidation, selective hydrogenolysis, selective dehydration, pyrolysis and gasification, steam reforming, thermal reduction into syngas, selective transesterification, selective etherification, oligomerization and polymerization, and conversion of glycerol into glycerol carbonate.

[1]  L. Bournay,et al.  New heterogeneous process for biodiesel production : A way to improve the quality and the value of the crude glycerin produced by biodiesel plants , 2005 .

[2]  Di Wang,et al.  Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. , 2006, Chemical communications.

[3]  H. Sajiki,et al.  Pd/C(en)-catalyzed regioselective hydrogenolysis of terminal epoxides to secondary alcohols , 1999 .

[4]  A. Corma,et al.  Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides , 2005 .

[5]  F. Porta,et al.  Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method: Synthesis and catalytic testing for liquid phase oxidation of glycerol , 2005 .

[6]  H. V. Bekkum,et al.  The Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols , 1997 .

[7]  C. Márquez-Álvarez,et al.  Solid Catalysts for the Synthesis of Fatty Esters of Glycerol, Polyglycerols and Sorbitol from Renewable Resources , 2004 .

[8]  P. Gérardin,et al.  Chemical Modification of Wood by Polyglycerol/Maleic Anhydride Treatment , 2001 .

[9]  P. L. Rogers,et al.  Application of Biotechnology to Industrial Sustainability , 2005 .

[10]  Michael Jerry Antal,et al.  A study of the gas-phase pyrolysis of glycerol , 1983 .

[11]  G. Marin,et al.  Engineering aspects of the aqueous noble metal catalysed alcohol oxidation , 2000 .

[12]  E. Sastre,et al.  Influence of the alkyl chain length of HSO3-R-MCM-41 on the esterification of glycerol with fatty acids , 2005 .

[13]  G. Hutchings,et al.  Oxidation of Glycerol Using Supported Gold Catalysts , 2004 .

[14]  S. Datta,et al.  Dehydration of Glycerol–Water Mixtures Using Pervaporation: Influence of Process Parameters , 2000 .

[15]  J. Dumesic,et al.  Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts , 2004 .

[16]  G. Hutchings,et al.  New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst , 2006 .

[17]  Michael Jerry Antal,et al.  Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water† , 1996 .

[18]  P. Gallezot,et al.  Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids , 1995 .

[19]  Tomohisa Miyazawa,et al.  Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin , 2007 .

[20]  F. Porta,et al.  Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals , 2005 .

[21]  Rafael van Grieken,et al.  Acidic Mesoporous Silica for the Acetylation of Glycerol: Synthesis of Bioadditives to Petrol Fuel , 2007 .

[22]  C. Márquez-Álvarez,et al.  Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination , 2002 .

[23]  J. Gardette,et al.  Mechanisms of photooxidation of polyglycerol , 2001 .

[24]  Zhengxiang Wang,et al.  Glycerol production by microbial fermentation: a review. , 2001, Biotechnology Advances.

[25]  Filiz Karaosmanoǧlu,et al.  Investigation of the Refining Step of Biodiesel Production , 1996 .

[26]  K. Gottlieb,et al.  Glycerin – ein nachwachsender Rohstoff , 1994 .

[27]  Y. Pouilloux,et al.  Glycerol transesterification with methyl stearate over solid basic catalysts. I. Relationship between activity and basicity , 2001 .

[28]  L. Prati,et al.  Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols , 1998 .

[29]  L. C. Meher,et al.  Technical aspects of biodiesel production by transesterification—a review , 2006 .

[30]  James A. Dumesic,et al.  Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts , 2004 .

[31]  H. Kimura Polyketomalonate by catalytic oxidation of glycerol over a CeBiPt catalyst. II , 1998 .

[32]  D. Plusquellec,et al.  Synthese de polyglycerols lineaires et cycliques. Tensioactifs polyglyceryles : synthese et caracterisations , 2002 .

[33]  Takuya Fukumura,et al.  Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. , 2007, Bioresource technology.

[34]  D. Kiely,et al.  Evaluation of the film and adhesive properties of some block copolymer polyhydroxypolyamides from esterified aldaric acids and diamines , 2000 .

[35]  H. Kimura,et al.  Oxidation assisted new reaction of glycerol , 2001 .

[36]  Tomohisa Miyazawa,et al.  Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism , 2006 .

[37]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[38]  H. V. Bekkum,et al.  Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid , 1996 .

[39]  Martin Bajus,et al.  Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins , 2006 .

[40]  G. Ondrey,et al.  Chiral engineering: breaks through the looking glass , 1993 .

[41]  E. Sastre,et al.  Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts , 2003 .

[42]  Y. Pouilloux,et al.  Selective glycerol transesterification over mesoporous basic catalysts , 2004 .

[43]  A. Corma,et al.  Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts , 2006 .

[44]  G. Hutchings,et al.  Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts , 1999 .

[45]  H. V. Bekkum,et al.  Highly selective oxidation of aldonic acids to 2-keto-aldonic acids over Pt—Bi and Pt—Pb catalysts , 1995 .

[46]  H. Kimura,et al.  Selective oxidation of glycerol on a platinum-bismuth catalyst , 1993 .

[47]  E. Dinjus,et al.  Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water , 2002 .

[48]  A. Baiker,et al.  Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions , 1994 .

[49]  J. Barbier,et al.  Deactivation of supported copper based catalysts during polyol conversion in aqueous phase , 1995 .

[50]  N. Garti,et al.  Polyglycerol esters: Optimization and techno-economic evaluation , 1981 .

[51]  P. Gallezot,et al.  Chemoselective catalytic oxidation of glycerol with air on platinum metals , 1995 .

[52]  P. Schoenmakers,et al.  Characterization of glycerin-based polyols by capillary electrophoresis. , 2004, Journal of Chromatography A.

[53]  P. Gallezot,et al.  Selective oxidation of alcohols and aldehydes on metal catalysts , 2000 .

[54]  H. Kimura Poly(ketomalonate) by catalytic oxidation of glycerol(4)anionic polymerization , 1998 .

[55]  David K. Johnson,et al.  Mechanisms of glycerol dehydration. , 2006, The journal of physical chemistry. A.

[56]  H. Kimura,et al.  Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor , 1993 .

[57]  Galen J. Suppes,et al.  Removal of Residual Catalyst from Simulated Biodiesel's Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol , 2006 .

[58]  E. Sastre,et al.  Selective synthesis of glycerol monolaurate with zeolitic molecular sieves , 2000 .

[59]  Martin Bajus,et al.  tert-Butylation of glycerol catalysed by ion-exchange resins , 2005 .

[60]  H. V. Bekkum,et al.  Binary caesium–lanthanum oxide supported on MCM-41: A new stable heterogeneous basic catalyst , 1997 .

[61]  Ronald Landucci,et al.  Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks , 1994 .

[62]  M. Mccoy C0-Based Dry-Cleaning Chain Launched In Germany , 2006 .

[63]  G. Hutchings,et al.  Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. , 2002, Chemical communications.

[64]  G. Palmisano,et al.  One-pot electrocatalytic oxidation of glycerol to DHA , 2006 .

[65]  H. Vogel,et al.  Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production , 2006 .

[66]  N. Park,et al.  Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts , 2003 .

[67]  C. Márquez-Álvarez,et al.  A novel synthesis route of well ordered, sulfur-bearing MCM-41 catalysts involving mixtures of neutral and cationic surfactants , 2001 .

[68]  A. Baiker,et al.  Catalyst potential: a key for controlling alcohol oxidation in multiphase reactors , 1995 .

[69]  Buxing Han,et al.  Carbon onions synthesized via thermal reduction of glycerin with magnesium , 2005 .

[70]  G. Vicente,et al.  Integrated biodiesel production: a comparison of different homogeneous catalysts systems. , 2004, Bioresource technology.

[71]  A. Akahane,et al.  Phase behavior of polyglycerol didodecanoates in water. , 2002, Journal of colloid and interface science.

[72]  Elizabeth Wilson,et al.  BIODIESEL REVS UP: Fuel made from vegetable oil leads the pack of alternatives to petroleum products , 2002 .

[73]  Elio Santacesaria,et al.  Synthesis of biodiesel via homogeneous Lewis acid catalyst , 2005 .

[74]  Alvise Perosa,et al.  Selective Hydrogenolysis of Glycerol with Raney Nickel , 2005 .

[75]  P. Gallezot Selective oxidation with air on metal catalysts , 1997 .

[76]  Peter Kritzer,et al.  Corrosion in high-temperature and supercritical water and aqueous solutions: a review , 2004 .

[77]  Toshimitsu Suzuki,et al.  Production of Hydrogen by Steam Reforming of Glycerin on Ruthenium Catalyst , 2005 .

[78]  L. Canoira,et al.  Synthesis of 1-tert-butoxy-2-propanol (PGTBE) from propylene glycol and isobutene in a packed trickle-bed reactor on acid catalysts , 2000 .

[79]  J. V. Gerpen,et al.  Biodiesel processing and production , 2005 .

[80]  Galen J. Suppes,et al.  Distribution of methanol and catalysts between biodiesel and glycerin phases , 2005 .

[81]  H. Waldmann,et al.  Über die Dehydratisierung von Alkoholen mittels Phthalsäureanhydrids (1. Mitteil.) , 1950 .

[82]  Susan T. Bagley,et al.  EFFECTS OF AN OXIDATION CATALYTIC CONVERTER AND A BIODIESEL FUEL ON THE CHEMICAL, MUTAGENIC, AND PARTICLE SIZE CHARACTERISTICS OF EMISSIONS FROM A DIESEL ENGINE , 1998 .

[83]  C. Márquez-Álvarez,et al.  Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica: Part 2. Esterification of Glycerol with Fatty Acids , 2000 .

[84]  T. Benvegnu,et al.  Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards , 2001 .

[85]  G. N. Richards,et al.  Four-carbon model compounds for the reactions of sugars in water at high temperature , 1990 .

[86]  L. Hoang,et al.  Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium , 1991 .

[87]  Brent H. Shanks,et al.  Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols , 2005 .

[88]  Michele Aresta,et al.  Direct carboxylation of alcohols to organic carbonates: Comparison of the Group 5 element alkoxides catalytic activity: An insight into the reaction mechanism and its key steps , 2006 .

[89]  Tomohisa Miyazawa,et al.  Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions , 2005 .

[90]  F. Porta,et al.  Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity , 2004 .

[91]  Toru Iida,et al.  Acrolein synthesis from glycerol in hot-compressed water. , 2007, Bioresource technology.

[92]  M. Martínez,et al.  Selective esterification of glycerine to 1-glycerol monooleate : 2. Optimization studies , 1997 .

[93]  R. Gonzalez,et al.  Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. , 2007, Current opinion in biotechnology.

[94]  B. Kuster,et al.  Lead modified platinum on carbon catalyst for the selective oxidation of (2−) hydroxycarbonic acids, and especially polyhydroxycarbonic acids to their 2-keto derivatives , 1987 .

[95]  E. Sastre,et al.  Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid , 2001 .

[96]  B. Shanks,et al.  Kinetic Analysis of the Hydrogenolysis of Lower Polyhydric Alcohols: Glycerol to Glycols , 2003 .

[97]  K. Lehnert,et al.  Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts , 2007 .

[98]  A. Villa,et al.  Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water , 2006 .

[99]  J. Clark,et al.  Structure and reactivity of sol-gel sulphonic acid silicas , 2002 .

[100]  Y. Pouilloux,et al.  Reaction of glycerol with fatty acids in the presence of ion-exchange resins: Preparation of monoglycerides , 1999 .

[101]  C. Márquez-Álvarez,et al.  Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica: Part 1. Synthesis and Characterization , 2000 .

[102]  David Thompson,et al.  Catalysis By Gold , 1999 .

[103]  I. Arvanitoyannis,et al.  Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1. Synthesis, characterization and study of their biodegradability , 1995 .

[104]  Y. Pouilloux,et al.  Mesoporous basic catalysts: comparison with alkaline exchange zeolites (basicity and porosity). Application to the selective etherification of glycerol to polyglycerols. , 1998 .

[105]  T. Tougas,et al.  Preparation of glyceric acid by anodic oxidation of glycerol at a silver oxide electrode , 1987 .

[106]  J. Barbier,et al.  Polyol Conversion by Liquid Phase Heterogeneous Catalysis Over Metals , 1988 .

[107]  A. R. Galletti,et al.  Anionic ruthenium iodorcarbonyl complexes as selective dehydroxylation catalysts in aqueous solution , 1991 .

[108]  Martin C. Hawley,et al.  Conversion of Glycerol to 1,3-Propanediol via Selective Dehydroxylation , 2003 .

[109]  J. Dumesic,et al.  Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. , 2006, Angewandte Chemie.

[110]  G. T. Tsao,et al.  Coproduction of ethanol and glycerol , 2000 .

[111]  H. Kimura Polyketomalonates by catalytic oxidation of glycerol. I , 1996 .

[112]  A. Villa,et al.  Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol , 2005 .

[113]  Sylvain Claude,et al.  Research of new outlets for glycerol ‐ recent developments in France , 1999 .

[114]  E. Sastre,et al.  Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids , 2003 .

[115]  G. Hutchings,et al.  Oxidation of glycerol using supported Pt, Pd and Au catalysts , 2003 .

[116]  A. Kondo,et al.  Biodiesel fuel production by transesterification of oils. , 2001, Journal of bioscience and bioengineering.

[117]  J. Pérez-Pariente,et al.  Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy , 2000 .

[118]  Paul J. Dauenhauer,et al.  Renewable hydrogen by autothermal steam reforming of volatile carbohydrates , 2006 .

[119]  Y. Pouilloux,et al.  Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts , 2002 .

[120]  Charles E Wyman,et al.  Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals, and Power , 2003, Biotechnology progress.

[121]  M. Antal,et al.  Acid-catalysed dehydration of alcohols in supercritical water , 1987 .

[122]  A. Behr,et al.  Verfahrensentwicklung der säurekatalysierten Veretherung von Glycerin mit Isobuten zu Glycerintertiärbutylethern , 2001 .

[123]  Y. Pouilloux,et al.  Selective Oligomerization of Glycerol Over Mesoporous Catalysts , 2004 .

[124]  Manuel Frondel,et al.  Biodiesel: A New Oildorado? , 2005 .

[125]  P. Ghosh,et al.  Metal-Catalyzed Selective Deoxygenation of Diols to Alcohols. , 2001, Angewandte Chemie.

[126]  Juan C. Yori,et al.  Deglycerolization of Biodiesel Streams by Adsorption Over Silica Beds , 2007 .

[127]  D. Zhao,et al.  Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography , 2002 .

[128]  M. Martínez,et al.  Selective Esterification of Glycerine to 1-Glycerol Monooleate. 1. Kinetic Modeling , 1997 .

[129]  Michele Aresta,et al.  A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions , 2006 .

[130]  L. Prati,et al.  Application of gold catalysts to selective liquid phase oxidation , 2002 .

[131]  J. Peliska,et al.  Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid. , 2000, Biochemistry.

[132]  J. Aubry,et al.  Short Chain Glycerol 1-Monoethers – a New Class of Green Solvo-Surfactants, Green Chemistry , 2006 .

[133]  H. Baumann,et al.  Natural Fats and Oils—Renewable Raw Materials for the Chemical Industry , 1988 .

[134]  Y. Pouilloux,et al.  Selective synthesis of monoglycerides from glycerol and oleic acid in the presence of solid catalysts , 1997 .

[135]  Michele Aresta,et al.  Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction , 2005 .

[136]  A. McAloon,et al.  A process model to estimate biodiesel production costs. , 2006, Bioresource technology.

[137]  M. Pagliaro,et al.  One‐Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO , 2003 .

[138]  T. Caulier,et al.  Polyglycerol esters demonstrate superior antifogging properties for films , 2005 .

[139]  D. Vos,et al.  Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions , 1998 .

[140]  Zéphirin Mouloungui,et al.  Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins , 1998 .

[141]  Y. Qian,et al.  Fabrication of hollow carbon cones , 2004 .

[142]  L. Prati,et al.  Gold on Carbon: Influence of Support Properties on Catalyst Activity in Liquid-Phase Oxidation , 2003 .

[143]  A. Corma,et al.  Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts , 1998 .

[144]  N. Sonntag Glycerolysis of fats and methyl esters — Status, review and critique , 1982 .

[145]  Keiichi Tsuto,et al.  Catalytic synthesis ofdl-serine and glycine from glycerol , 1993 .

[146]  Michael Jerry Antal,et al.  Pyrolytic sources of hydrocarbons from biomass , 1985 .

[147]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[148]  M. Martínez,et al.  Formation of a jojoba oil analog by esterification of oleic acid using zeolites as catalyst , 1992 .

[149]  Reetta Karinen,et al.  New biocomponents from glycerol , 2006 .

[150]  A. Motheo,et al.  Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices , 2002 .

[151]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[152]  D. Vos,et al.  Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides , 1999 .

[153]  A. Corma,et al.  Acidity and Stability of MCM-41 Crystalline Aluminosilicates , 1994 .