On Mixed Iterated Revisions

Several forms of iterable belief change exist, differing in the kind of change and its strength: some operators introduce formulae, others remove them; some add formulae unconditionally, others only as additions to the previous beliefs; some only relative to the current situation, others in all possible cases. A sequence of changes may involve several of them: for example, the first step is a revision, the second a contraction and the third a refinement of the previous beliefs. The ten operators considered in this article are shown to be all reducible to three: lexicographic revision, refinement and severe withdrawal. In turn, these three can be expressed in terms of lexicographic revision at the cost of restructuring the sequence. This restructuring needs not to be done explicitly: an algorithm that works on the original sequence is shown. The complexity of mixed sequences of belief change operators is also analyzed. Most of them require only a polynomial number of calls to a satisfiability checker, some are even easier.

[1]  Christoph Beierle,et al.  A Conditional Perspective for Iterated Belief Contraction , 2019, ECAI.

[2]  Sébastien Konieczny,et al.  On Iterated Contraction: Syntactic Characterization, Representation Theorem and Limitations of the Levi Identity , 2017, SUM.

[3]  Eduardo L. Fermé,et al.  EPISTEMIC ENTRENCHMENT-BASED MULTIPLE CONTRACTIONS , 2013, The Review of Symbolic Logic.

[4]  Mary-Anne Williams,et al.  Kinetic Consistency and Relevance in Belief Revision , 2016, JELIA.

[5]  Stephen Murray Glaister,et al.  Recovery Recovered , 2000, J. Philos. Log..

[6]  John Cantwell,et al.  On the logic of small changes in hypertheories , 2008 .

[7]  S Ebastien Konieczny Operators with Memory for Iterated Revision Laboratoire D'informatique Fondamentale De Lille Operators with Memory for Iterated Revision , 1998 .

[8]  Didier Dubois,et al.  Iterated Revision as Prioritized Merging , 2006, KR.

[9]  Eduardo L. Fermé Irrevocable Belief Revision and Epistemic Entrenchment , 2000, Log. J. IGPL.

[10]  Daniel Lehmann,et al.  Belief Revision, Revised , 1995, IJCAI.

[11]  H. Kyburg Iterated Belief Change Based on Epistemic Entrenchment* , 1994 .

[12]  Marco Schaerf,et al.  Reducing Belief Revision to Circumscription (and Vice Versa) , 1997, Artif. Intell..

[13]  Balázs Szörényi,et al.  Horn Complements: Towards Horn-to-Horn Belief Revision , 2008, AAAI.

[14]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[15]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[16]  Paolo Liberatore,et al.  Belief Merging by Examples , 2014, ACM Trans. Comput. Log..

[17]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[18]  Richard Booth,et al.  On Strengthening the Logic of Iterated Belief Revision: Proper Ordinal Interval Operators , 2018, KR.

[19]  Thomas Andreas Meyer,et al.  Syntactic Representations of Semantic Merging Operations , 2002, PRICAI.

[20]  Mary-Anne Williams,et al.  Transmutations of Knowledge Systems , 1994, KR.

[21]  Krister Segerberg Irrevocable Belief Revision in Dynamic Doxastic Logic , 1998, Notre Dame J. Formal Log..

[22]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[23]  Hans Rott,et al.  Shifting Priorities: Simple Representations for Twenty-Seven Iterated Theory Change Operators , 2009, Towards Mathematical Philosophy.

[24]  Michael Thielscher,et al.  Iterated Belief Revision, Revised , 2005, IJCAI.

[25]  Nicola Olivetti,et al.  Hypersequent Calculi for Lewis' Conditional Logics with Uniformity and Reflexivity , 2017, TABLEAUX.

[26]  Lane A. Hemaspaandra,et al.  The Strong Exponential Hierarchy Collapses , 1987, J. Comput. Syst. Sci..

[27]  Georg Gottlob,et al.  The Complexity Class Theta2p: Recent Results and Applications in AI and Modal Logic , 1997, FCT.

[28]  Odile Papini Iterated Revision Operations Stemming from the History of an Agent’s Observations , 2001 .

[29]  Franz Huber,et al.  Ranking Functions , 2009, Encyclopedia of Artificial Intelligence.

[30]  Pavlos Peppas,et al.  Conflicts between Relevance-Sensitive and Iterated Belief Revision , 2008, ECAI.

[31]  Sven Ove Hansson,et al.  Logic of belief revision , 2011 .

[32]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[33]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[34]  Jake Chandler,et al.  From iterated revision to iterated contraction: Extending the Harper Identity , 2019, Artif. Intell..

[35]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[36]  Judea Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[37]  Eduardo L. Fermé,et al.  A Brief Note About Rott Contraction , 1998, Log. J. IGPL.

[38]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[39]  Marijn J. H. Heule,et al.  SAT Competition 2016: Recent Developments , 2017, AAAI.

[40]  Richard Booth,et al.  A Bad Day Surfing Is Better than a Good Day Working: How to Revise a Total Preorder , 2006, KR.

[41]  Odile Papini,et al.  Belief Update Within Propositional Fragments , 2015, ECSQARU.

[42]  Eduardo L. Fermé,et al.  Revision by comparison , 2004, Artif. Intell..

[43]  Wolfgang Spohn,et al.  Ranking Functions, AGM Style , 1999 .

[44]  Dov M. Gabbay,et al.  Controlled Revision - An algorithmic approach for belief revision , 2003, J. Log. Comput..

[45]  Ken Satoh Nonmonotonic Reasoning by Minimal Belief Revision , 1988, FGCS.

[46]  Bernhard Nebel,et al.  How Hard is it to Revise a Belief Base , 1996 .

[47]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[48]  Hans Rott,et al.  Revision by comparison as a unifying framework: Severe withdrawal, irrevocable revision and irrefutable revision , 2006, Theor. Comput. Sci..

[49]  Paolo Liberatore,et al.  The Complexity of Iterated Belief Revision , 1997, ICDT.

[50]  Richard Booth,et al.  Reconstructing an Agent's Epistemic State from Observations , 2005, IJCAI.

[51]  Georg Gottlob,et al.  Complexity Results for Disjunctive Logic Programming and Application to Nonmonotonic Logics , 1993, ILPS.

[52]  Tomi Janhunen,et al.  On the intertranslatability of non‐monotonic logics , 1999, Annals of Mathematics and Artificial Intelligence.

[53]  Georg Gottlob,et al.  The Complexity of Nested Counterfactuals and Iterated Knowledge Base Revisions , 1993, IJCAI.

[54]  Sébastien Konieczny,et al.  A framework for iterated revision , 2000, J. Appl. Non Class. Logics.

[55]  Francesco M. Donini,et al.  Space Efficiency of Propositional Knowledge Representation Formalisms , 2000, J. Artif. Intell. Res..

[56]  Christoph Beierle,et al.  Descriptor Revision for Conditionals: Literal Descriptors and Conditional Preservation , 2020, KI.

[57]  Richard Booth,et al.  Admissible and Restrained Revision , 2006, J. Artif. Intell. Res..

[58]  Craig Boutilier,et al.  Iterated revision and minimal change of conditional beliefs , 1996, J. Philos. Log..

[59]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[60]  Marco Schaerf,et al.  Belief Revision and Update: Complexity of Model Checking , 2001, J. Comput. Syst. Sci..

[61]  Mary-Anne Williams,et al.  Observations on Darwiche and Pearl's Approach for Iterated Belief Revision , 2019, IJCAI.

[62]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[63]  Maurice Pagnucco,et al.  Dynamic belief revision operators , 2003, Artif. Intell..

[64]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[65]  Maurice Pagnucco,et al.  Severe Withdrawal (and Recovery) , 1999, J. Philos. Log..

[66]  Sven Ove Hansson,et al.  Iterated Descriptor Revision and the Logic of Ramsey Test Conditionals , 2016, J. Philos. Log..

[67]  Hans Rott,et al.  Bounded Revision: Two-Dimensional Belief Change Between Conservative and Moderate Revision , 2012, J. Philos. Log..

[68]  Hans Rott Coherence and Conservatism in the Dynamics of Belief II: Iterated Belief Change without Dispositional Coherence , 2003, J. Log. Comput..

[69]  Didier Dubois,et al.  A Computational Model for Belief Change and Fusing Ordered Belief Bases , 2001 .