Developments in the field of bioorthogonal bond forming reactions-past and present trends.

In response to the ever increasing need of chemical biology for new tools, a wide variety of new, highly selective reactions have been described. Herein we report a summary of recent developments and the historical background on bioorthogonal ligation reactions.

[1]  Q. Wang,et al.  Surface Modification of Tobacco Mosaic Virus with “Click” Chemistry , 2008, Chembiochem : a European journal of chemical biology.

[2]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[3]  P. Friedl,et al.  Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells , 2010, Angewandte Chemie.

[4]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[5]  Wenjiao Song,et al.  Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells. , 2008, Journal of the American Chemical Society.

[6]  C. Bertozzi,et al.  In Vivo Imaging of Caenorhabditis elegans Glycans , 2009, ACS chemical biology.

[7]  J. G. Vries Palladium-Catalysed Coupling Reactions , 2012 .

[8]  B. G. Davis,et al.  Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins , 2013, Journal of the American Chemical Society.

[9]  C. Schultz,et al.  Selective fluorescence labeling of lipids in living cells. , 2009, Angewandte Chemie.

[10]  Brian A. Smith,et al.  A new strategy for the site-specific modification of proteins in vivo. , 2003, Biochemistry.

[11]  T. Carell,et al.  Copper-free "click" modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. , 2009, Organic letters.

[12]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[13]  A. Dondoni The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. , 2008, Angewandte Chemie.

[14]  A. Michael Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester , 1893 .

[15]  M. Gait,et al.  Development of a general methodology for labelling peptide–morpholino oligonucleotide conjugates using alkyne–azide click chemistry† †Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c3cc46067c Click here for additional data file. , 2013, Chemical communications.

[16]  A. Ojida,et al.  Suzuki coupling for protein modification , 2005 .

[17]  G. Wittig,et al.  Zur Existenz niedergliedriger Cycloalkine, I , 1961 .

[18]  W. Oyen,et al.  In-depth evaluation of the cycloaddition--retro-Diels--Alder reaction for in vivo targeting with [(111)In]-DTPA-RGD conjugates. , 2009, Nuclear medicine and biology.

[19]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[20]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[21]  A. Lippert,et al.  Stereoretentive synthesis and chemoselective amide-forming ligations of C-terminal peptide alpha-ketoacids. , 2008, Journal of the American Chemical Society.

[22]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[23]  K. Alder,et al.  Über das abgestufte Additionsvermögen von ungesättigten Ringsystemen , 1931 .

[24]  H. Dixon Transamination of peptides. , 1964, The Biochemical journal.

[25]  P. Schultz,et al.  Genetically encoded alkenes in yeast. , 2010, Angewandte Chemie.

[26]  R. Raines,et al.  Protein assembly by orthogonal chemical ligation methods. , 2003, Journal of the American Chemical Society.

[27]  J. Palomo Click reactions in protein chemistry: from the preparation of semisynthetic enzymes to new click enzymes. , 2012, Organic & biomolecular chemistry.

[28]  Carlo P Ramil,et al.  Bioorthogonal chemistry: strategies and recent developments. , 2013, Chemical communications.

[29]  C. Bertozzi,et al.  Live‐Cell Imaging of Cellular Proteins by a Strain‐Promoted Azide–Alkyne Cycloaddition , 2010, Chembiochem : a European journal of chemical biology.

[30]  R. Goody,et al.  Site-selective protein immobilization by Staudinger ligation. , 2006, Angewandte Chemie.

[31]  P. Dawson,et al.  Nucleophilic catalysis of oxime ligation. , 2006, Angewandte Chemie.

[32]  Michael M. Madden,et al.  A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. , 2008, Angewandte Chemie.

[33]  Peng R. Chen,et al.  Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling , 2012 .

[34]  Ronald T. Raines,et al.  Site-specific protein immobilization by Staudinger ligation. , 2003, Journal of the American Chemical Society.

[35]  C. Bertozzi,et al.  Mechanistic investigation of the staudinger ligation. , 2005, Journal of the American Chemical Society.

[36]  R. Huisgen,et al.  1.3‐Dipolare Cycloadditionen, XXV. Der Nachweis des freien Diphenylnitrilimins als Zwischenstufe bei Cycloadditionen , 1967 .

[37]  Hakho Lee,et al.  Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. , 2010, Nature nanotechnology.

[38]  I. Singh,et al.  Solid phase strain promoted "click" modification of DNA via [3+2]-nitrile oxide-cyclooctyne cycloadditions. , 2011, Chemical communications.

[39]  A. van den Berg,et al.  Viability study of HL60 cells in contact with commonly used microchip materials , 2006, Electrophoresis.

[40]  H. Mootz,et al.  Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. , 2013, Bioorganic & medicinal chemistry.

[41]  C. Bertozzi,et al.  Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. , 2002, Journal of the American Chemical Society.

[42]  R. Raines,et al.  Staudinger ligation of peptides at non-glycyl residues. , 2006, The Journal of organic chemistry.

[43]  Mihály Kállay,et al.  A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. , 2012, Chemistry.

[44]  R. Goody,et al.  Exploiting the Substrate Tolerance of Farnesyltransferase for Site‐Selective Protein Derivatization , 2007, ChemBioChem.

[45]  Jennifer A. Prescher,et al.  Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.

[46]  W. Reutter,et al.  Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.

[47]  A. Scholten,et al.  On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases , 2013, Journal of the American Chemical Society.

[48]  C. Bertozzi,et al.  A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry , 2008, Organic letters.

[49]  Roland Brock,et al.  Cellular integration of an enzyme-loaded polymersome nanoreactor. , 2010, Angewandte Chemie.

[50]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[51]  C. T. Anderson,et al.  Illuminating the wall , 2012, Plant signaling & behavior.

[52]  O. Piermatti,et al.  [4 + 2] cycloadditions of nitroalkenes in water. Highly asymmetric synthesis of functionalized nitronates. , 2001, The Journal of organic chemistry.

[53]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[54]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[55]  T. Posner Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe , 1905 .

[56]  I. Alabugin,et al.  Strain-promoted azide-alkyne cycloadditions of benzocyclononynes. , 2012, The Journal of organic chemistry.

[57]  B. G. Davis,et al.  DNA Modification under Mild Conditions by Suzuki–Miyaura Cross-Coupling for the Generation of Functional Probes** , 2013, Angewandte Chemie.

[58]  Tamsyn Montagnon,et al.  The Diels--Alder reaction in total synthesis. , 2002, Angewandte Chemie.

[59]  A. Blomquist,et al.  Many-membered Carbon Rings. VII. Cycloöctyne , 1953 .

[60]  R. Nolte,et al.  Metal‐Free Triazole Formation as a Tool for Bioconjugation , 2007, Chembiochem : a European journal of chemical biology.

[61]  U. Bunz,et al.  Alkene metathesis - a tool for the synthesis of conjugated polymers. , 2012, Macromolecular rapid communications.

[62]  T. Kigawa,et al.  Site‐Specific Functionalization of Proteins by Organopalladium Reactions , 2006, Chembiochem : a European journal of chemical biology.

[63]  D. Tirrell,et al.  A BODIPY‐Cyclooctyne for Protein Imaging in Live Cells , 2011, Chembiochem : a European journal of chemical biology.

[64]  Craig S. McKay,et al.  Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. , 2010, Chemical communications.

[65]  J. V. van Hest,et al.  Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. , 2013, Organic & biomolecular chemistry.

[66]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[67]  Kwangmeyung Kim,et al.  Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. , 2012, Angewandte Chemie.

[68]  C. Bertozzi,et al.  Probing the Mycobacterial Trehalome with Bioorthogonal Chemistry , 2012, Journal of the American Chemical Society.

[69]  J. Rademann,et al.  Propargyl amides as irreversible inhibitors of cysteine proteases--a lesson on the biological reactivity of alkynes. , 2013, Angewandte Chemie.

[70]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[71]  Zhiyong Wang,et al.  The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. , 2011, Molecular bioSystems.

[72]  Rahimi M. Yusop,et al.  Palladium-mediated intracellular chemistry. , 2011, Nature chemistry.

[73]  P. Nanni,et al.  A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. , 2009, Chemistry.

[74]  Samuel Thompson,et al.  A fluorophore ligase for site-specific protein labeling inside living cells , 2010, Proceedings of the National Academy of Sciences.

[75]  R. Raines,et al.  Staudinger ligation: a peptide from a thioester and azide. , 2000, Organic letters.

[76]  A. Jäschke,et al.  Site-specific modification of enzymatically synthesized RNA: Transcription initiation and Diels-Alder reaction , 1997 .

[77]  H. Feuer Nitrile oxides, nitrones, and nitronates in organic synthesis : novel strategies in synthesis , 2007 .

[78]  M. Ghadiri,et al.  SUPRAMOLECULAR DESIGN BY COVALENT CAPTURE. DESIGN OF A PEPTIDE CYLINDER VIA HYDROGEN-BOND-PROMOTED INTERMOLECULAR OLEFIN METATHESIS , 1995 .

[79]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[80]  K. H. Shaughnessy Beyond TPPTS: New Approaches to the Development of Efficient Palladium‐Catalyzed Aqueous‐Phase Cross‐Coupling Reactions , 2006 .

[81]  T. Muir Semisynthesis of proteins by expressed protein ligation. , 2003, Annual review of biochemistry.

[82]  A. Salic,et al.  Metabolic labeling and direct imaging of choline phospholipids in vivo , 2009, Proceedings of the National Academy of Sciences.

[83]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[84]  F. Fernández-Trillo,et al.  Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery , 2012, Pharmaceutical Research.

[85]  H. Waldmann,et al.  Diels-Alder ligation and surface immobilization of proteins. , 2005, Angewandte Chemie.

[86]  J. Carter,et al.  Diels--Alder bioconjugation of diene-modified oligonucleotides. , 2001, The Journal of organic chemistry.

[87]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[88]  C. Bertozzi,et al.  Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting. , 2001, Biochimica et biophysica acta.

[89]  J. Vliegenthart,et al.  Thiol addition to protected allyl glycosides: An improved method for the preparation of spacer-arm glycosides , 1997 .

[90]  A. Marra,et al.  Recent applications of thiol-ene coupling as a click process for glycoconjugation. , 2012, Chemical Society reviews.

[91]  G. Pruijn,et al.  Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. , 2012, Bioconjugate chemistry.

[92]  Dario Neri,et al.  Site-specific traceless coupling of potent cytotoxic drugs to recombinant antibodies for pharmacodelivery. , 2012, Journal of the American Chemical Society.

[93]  H. Overkleeft,et al.  Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. , 2012, Angewandte Chemie.

[94]  Michael M. Madden,et al.  A bioorthogonal chemistry strategy for probing protein lipidation in live cells. , 2010, Molecular bioSystems.

[95]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[96]  P. Dawson,et al.  Synthesis of native proteins by chemical ligation. , 2000, Annual review of biochemistry.

[97]  C. Bertozzi,et al.  A Bioorthogonal Quadricyclane Ligation , 2011, Journal of the American Chemical Society.

[98]  Mingzi M. Zhang,et al.  Robust fluorescent detection of protein fatty-acylation with chemical reporters. , 2009, Journal of the American Chemical Society.

[99]  A. Marx,et al.  Novel strategies for the site-specific covalent labelling of nucleic acids. , 2008, Chemical communications.

[100]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[101]  P. Schultz,et al.  A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. , 2008, Journal of the American Chemical Society.

[102]  D. Astruc,et al.  Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. , 2012, Accounts of chemical research.

[103]  A. Myers,et al.  Storable arylpalladium(II) reagents for alkene labeling in aqueous media. , 2011, Journal of the American Chemical Society.

[104]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[105]  N. Steinmetz,et al.  Labeling live cells by copper-catalyzed alkyne--azide click chemistry. , 2010, Bioconjugate chemistry.

[106]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[107]  R. Goody,et al.  One-pot dual-labeling of a protein by two chemoselective reactions. , 2011, Angewandte Chemie.

[108]  M. Lahiri,et al.  BODIPY based "click on" fluorogenic dyes: Application in live cell imaging , 2014 .

[109]  T. Kigawa,et al.  Regioselective Carbon–Carbon Bond Formation in Proteins with Palladium Catalysis; New Protein Chemistry by Organometallic Chemistry , 2006, Chembiochem : a European journal of chemical biology.

[110]  Anna E Speers,et al.  Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[111]  Qing Lin,et al.  Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. , 2007, Organic letters.

[112]  Reyna K. V. Lim,et al.  Bioorthogonal chemistry: recent progress and future directions. , 2010, Chemical communications.

[113]  Weiqi Wang,et al.  5-Ethynylcytidine as a new agent for detecting RNA synthesis in live cells by "click" chemistry. , 2013, Analytical biochemistry.

[114]  L. Carroll,et al.  Bioorthogonal chemistry for pre-targeted molecular imaging--progress and prospects. , 2013, Organic & biomolecular chemistry.

[115]  O. Boerman,et al.  Application of Metal‐Free Triazole Formation in the Synthesis of Cyclic RGD–DTPA Conjugates , 2008, Chembiochem : a European journal of chemical biology.

[116]  H. Waldmann,et al.  Photochemical surface patterning by the thiol-ene reaction. , 2008, Angewandte Chemie.

[117]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[118]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[119]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[120]  Kyle D. Baucom,et al.  Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and alpha-ketoacids. , 2006, Angewandte Chemie.

[121]  Daniel C. Anthony,et al.  Expanding the diversity of chemical protein modification allows post-translational mimicry , 2007, Nature.

[122]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[123]  Y. Gololobov,et al.  Sixty years of staudinger reaction , 1981 .

[124]  J. Bode,et al.  Sequential α-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. , 2012, Angewandte Chemie.

[125]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[126]  Sjoerd Dirksen,et al.  Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. , 2006, Journal of the American Chemical Society.

[127]  R. Sustmann A simple model for substituent effects in cycloaddition reactions. II. The diels-alder reaction , 1971 .

[128]  Yuan Fang,et al.  A click-activated fluorescent probe for selective detection of hydrazoic acid and its application in biological imaging. , 2013, Chemical communications.

[129]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[130]  J. Tam,et al.  Unprotected Peptides as Building Blocks for the Synthesis of Peptide Dendrimers with Oxime, Hydrazone, and Thiazolidine Linkages , 1995 .

[131]  Wei Zhang,et al.  A biosynthetic route to photoclick chemistry on proteins. , 2010, Journal of the American Chemical Society.

[132]  Chong Yu,et al.  A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Y. Kyōgoku,et al.  NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. , 1999, Biochemistry.

[134]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[135]  R. Weissleder,et al.  High‐Yielding, Two‐Step 18F Labeling Strategy for 18F‐PARP1 Inhibitors , 2011, ChemMedChem.

[136]  M. Uttamchandani,et al.  Cell-permeable small molecule probes for site-specific labeling of proteins. , 2003, Chemical communications.

[137]  A. Krebs,et al.  3.3.6.6-tetramethyl-1-thiacyclopheptin ein isolierbares siebenring-acetylen , 1970 .

[138]  T. Muir,et al.  Chemoselective backbone cyclization of unprotected peptides , 1997 .

[139]  M. Ghadiri,et al.  Chemoselective Pd(0)-catalyzed peptide coupling in water. , 2001, Organic letters.

[140]  R. Raines,et al.  High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. , 2001, Organic letters.

[141]  J. Sauer Diels‐Alder‐Reaktionen: Zum Reaktionsmechanismus , 1967 .

[142]  C. Bertozzi,et al.  Expanding the Diversity of Unnatural Cell‐Surface Sialic Acids , 2003, Chembiochem : a European journal of chemical biology.

[143]  Qing Lin,et al.  Discovery of new photoactivatable diaryltetrazoles for photoclick chemistry via 'scaffold hopping'. , 2011, Bioorganic & medicinal chemistry letters.

[144]  C. Bertozzi,et al.  Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry , 2012, Chembiochem : a European journal of chemical biology.

[145]  R. Pipkorn,et al.  Inverse‐electron‐demand Diels‐Alder reaction as a highly efficient chemoselective ligation procedure: Synthesis and function of a BioShuttle for temozolomide transport into prostate cancer cells , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[146]  J. Bode,et al.  Chemoselective cyclization of unprotected linear peptides by α-ketoacid-hydroxylamine amide-ligation. , 2012, Organic & biomolecular chemistry.

[147]  D. Rideout Self-assembling cytotoxins. , 1986, Science.

[148]  Hai‐Yan Xie,et al.  A mild and reliable method to label enveloped virus with quantum dots by copper-free click chemistry. , 2012, Analytical chemistry.

[149]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[150]  M. Wuest,et al.  Copper-free click chemistry with the short-lived positron emitter fluorine-18. , 2011, Organic & biomolecular chemistry.

[151]  J. V. Hest,et al.  Efficient incorporation of unsaturated methionine analogues into proteins in vivo , 2000 .

[152]  R. Huisgen,et al.  Communications: The Formation of Nitrile Imines in the Thermal Breakdown of 2,5-Disubstituted Tetrazoles , 1959 .

[153]  A. Pavia,et al.  Free-radical addition of 1-thiosugars to alkenes a new general approach to the synthesis of 1-thioglycosides , 1988 .

[154]  C. Bertozzi,et al.  A fluorogenic dye activated by the staudinger ligation. , 2003, Journal of the American Chemical Society.

[155]  T. Donohoe,et al.  Olefin cross-metathesis for the synthesis of heteroaromatic compounds. , 2012, Organic & biomolecular chemistry.

[156]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[157]  Fahmi Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2005, Journal of the American Chemical Society.

[158]  S. Remington,et al.  Green fluorescent protein: A perspective , 2011, Protein science : a publication of the Protein Society.

[159]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[160]  Carolyn R. Bertozzi,et al.  Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry , 2008, Journal of the American Chemical Society.

[161]  Xiaoguang Lei,et al.  Selective alkene metathesis in the total synthesis of complex natural product. , 2012, Topics in current chemistry.

[162]  C. Bertozzi,et al.  Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-Cyclodextrin , 2010, Journal of the American Chemical Society.

[163]  T. Wieland,et al.  Über Peptidsynthesen. 8. Mitteilung Bildung von S‐haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten , 1953 .

[164]  M. Debets,et al.  Bioconjugation with strained alkenes and alkynes. , 2011, Accounts of chemical research.

[165]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[166]  C. Bertozzi,et al.  Thiacycloalkynes for Copper-Free Click Chemistry , 2012, Angewandte Chemie.

[167]  T. Ramya,et al.  High-efficiency labeling of sialylated glycoproteins on living cells , 2009, Nature Methods.

[168]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[169]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[170]  Reyna K. V. Lim,et al.  Storable palladacycles for selective functionalization of alkyne-containing proteins. , 2013, Chemical communications.

[171]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[172]  B. G. Davis,et al.  Rewriting the bacterial glycocalyx via Suzuki-Miyaura cross-coupling. , 2013, Chemical communications.

[173]  Christopher D. Spicer,et al.  Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. , 2013, Angewandte Chemie.

[174]  Thomas R Ward,et al.  Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology. , 2011, Chemical communications.

[175]  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[176]  Reyna K. V. Lim,et al.  Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. , 2010, Chemical communications.

[177]  L. Carroll,et al.  Copper-free click--a promising tool for pre-targeted PET imaging. , 2012, Chemical communications.

[178]  Christopher D. Spicer,et al.  Palladium-mediated site-selective Suzuki-Miyaura protein modification at genetically encoded aryl halides. , 2011, Chemical Communications.

[179]  B. G. Davis,et al.  Enhanced Aqueous Suzuki–Miyaura Coupling Allows Site-Specific Polypeptide 18F-Labeling , 2013, Journal of the American Chemical Society.

[180]  N. Oppenheimer,et al.  Thiol Reduction of 3′-Azidothymidine to 3′-Aminothymidine: Kinetics and Biomedical Implications , 1988, Pharmaceutical Research.

[181]  K. Niikura,et al.  Control of bacteria adhesion by cell-wall engineering. , 2004, Journal of the American Chemical Society.

[182]  J. Morzycki Application of olefin metathesis in the synthesis of steroids , 2011, Steroids.

[183]  C. Schultz,et al.  Covalent Labeling of Biomolecules in Living Cells , 2011 .

[184]  P. Conti,et al.  Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. , 2010, Chemical communications.

[185]  Reyna K. V. Lim,et al.  Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells. , 2011, Journal of the American Chemical Society.

[186]  C. Bertozzi,et al.  A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. , 2000, Organic letters.

[187]  H. Staudinger,et al.  Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine , 1919 .

[188]  F. Schmidtchen,et al.  Bioconjugation of Peptides by Palladium-Catalyzed C-C Cross-Coupling in Water. , 1998, Angewandte Chemie.

[189]  A. Fürstner,et al.  Macrocycles by Ring-Closing-Metathesis, XI: Syntheses of (R)-(+)-Lasiodiplodin, Zeranol and Truncated Salicylihalamides , 1999 .

[190]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[191]  Neel S. Joshi,et al.  N-terminal protein modification through a biomimetic transamination reaction. , 2006, Angewandte Chemie.

[192]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[193]  O. Seitz,et al.  Bioorthogonal reactions challenged: DNA templated native chemical ligation during PCR , 2013 .

[194]  M. Wolfert,et al.  Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition , 2010, Angewandte Chemie.

[195]  T. Carell,et al.  A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.

[196]  J. Vederas,et al.  Investigation of the ring-closing metathesis of peptides in water. , 2013, Organic & biomolecular chemistry.

[197]  V. Popik,et al.  Light-induced hetero-Diels-Alder cycloaddition: a facile and selective photoclick reaction. , 2011, Journal of the American Chemical Society.

[198]  C. Bertozzi,et al.  Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. , 2003, Methods in enzymology.

[199]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[200]  Herbert Waldmann,et al.  Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins. , 2011, Accounts of chemical research.

[201]  R. Breinbauer,et al.  The Staudinger ligation-a gift to chemical biology. , 2004, Angewandte Chemie.

[202]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[203]  Peng R. Chen,et al.  Moving Pd‐Mediated Protein Cross Coupling to Living Systems , 2012, Chembiochem : a European journal of chemical biology.

[204]  Peng R. Chen,et al.  Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. , 2013, Journal of the American Chemical Society.

[205]  Wenjiao Song,et al.  Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles. , 2009, Angewandte Chemie.

[206]  R. Raines,et al.  Staudinger Ligation of α-Azido Acids Retains Stereochemistry , 2002 .

[207]  I. Singh,et al.  Fast RNA conjugations on solid phase by strain-promoted cycloadditions. , 2012, Organic & biomolecular chemistry.

[208]  Carolyn R Bertozzi,et al.  A chemical approach for identifying O-GlcNAc-modified proteins in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[209]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[210]  A. Kuzmin,et al.  Surface functionalization using catalyst-free azide-alkyne cycloaddition. , 2010, Bioconjugate chemistry.

[211]  A. El-Sagheer,et al.  Fast and efficient DNA crosslinking and multiple orthogonal labelling by copper-free click chemistry. , 2012, Chemical communications.

[212]  Tom W Muir,et al.  Protein ligation: an enabling technology for the biophysical analysis of proteins , 2006, Nature Methods.

[213]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.