Water Hammer Analysis and Parameter Estimation in Polymer Pipes with Weak Strain-Rate Feedback

AbstractA closed-form, multiple-scales, analytic approximation of a Kelvin-Voight viscoelastic model is developed to describe water hammer pressure wave attenuation in polymer pipe. The analytical results show that the evolution of water hammer for the single-pipe experiment considered in this paper is described by the Kelvin-Voight model as a weak strain-rate feedback occurring over three timescales. The wave transit and frictional timescales are augmented by a third intermediate timescale governed by the weakness of the strain-rate feedback. The scaling analysis also shows that, for weak strain-rate feedback, it is possible to use an optimization approach to estimate the scale of Kelvin-Voight parameters without experimental data. The optimal choice for weakness of the strain-rate feedback also determines the extent to which a weak strain-rate feedback description may be appropriate to describe an experimental design.

[1]  ANALYSIS OF WATER. , 1880, Science.

[2]  As Arris Tijsseling,et al.  Time scales and FSI in unsteady liquid-filled pipe flow , 2004 .

[3]  M. Mitosek,et al.  Influence of visco-elasticity on pressure wave velocity in polyethylene MDPE pipe , 2003 .

[4]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[5]  Jaywant H. Arakeri,et al.  Transition of unsteady velocity profiles with reverse flow , 1998, Journal of Fluid Mechanics.

[6]  E. Wahba Turbulence modeling for two-dimensional water hammer simulations in the low Reynolds number range , 2009 .

[7]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies , 2008 .

[8]  Adam Ostaszewski,et al.  Advanced Mathematical Methods , 1990 .

[10]  Silvia Meniconi,et al.  Two-Dimensional Features of Viscoelastic Models of Pipe Transients , 2014 .

[11]  Giovanni De Marinis,et al.  Hydraulic Transients in Viscoelastic Branched Pipelines , 2015 .

[12]  Silvia Meniconi,et al.  Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes , 2012 .

[13]  G. Kember,et al.  Analysis of Water Hammer Attenuation in Applications with Varying Valve Closure Times , 2015 .

[14]  Yeou-Koung Tung,et al.  Unsteady friction and visco-elasticity in pipe fluid transients , 2010 .

[15]  E. Benjamin Wylie,et al.  Fluid Transients in Systems , 1993 .

[16]  Cedo Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification , 2005 .

[17]  Ahmad Ahmadi,et al.  Fluid-structure interaction with pipe-wall viscoelasticity during water hammer , 2011 .

[18]  Bryan W. Karney,et al.  Velocity Profiles and Unsteady Pipe Friction in Transient Flow , 2000 .

[19]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools , 2008 .

[20]  Silvia Meniconi,et al.  Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow , 2012 .

[21]  K. Weinerowska-Bords,et al.  Viscoelastic model of waterhammer in single pipeline - problems and questions , 2006 .

[22]  Mohamed Salah Ghidaoui,et al.  Stability Analysis of Velocity Profiles in Water-Hammer Flows , 2001 .

[23]  Helena M. Ramos,et al.  Surge damping analysis in pipe systems: modelling and experiments Effet d'atténuation du coup de bélier dans les systèmes de conduits: modelation mathématique et expériences , 2004 .

[24]  A. Tijsseling,et al.  Waterhammer tests in a long PVC pipeline with short steel end sections , 2013 .

[25]  C. Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—experimental analysis and creep characterization , 2004 .

[26]  Bruno Brunone,et al.  Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement , 2010 .