Tracking-error model-based predictive control for mobile robots in real time

In this paper, a model-predictive trajectory-tracking control applied to a mobile robot is presented. Linearized tracking-error dynamics is used to predict future system behavior and a control law is derived from a quadratic cost function penalizing the system tracking error and the control effort. Experimental results on a real mobile robot are presented and a comparison of the control obtained with that of a time-varying state-feedback controller is given. The proposed controller includes velocity and acceleration constraints to prevent the mobile robot from slipping and a Smith predictor is used to compensate for the vision-system dead-time. Some ideas for future work are also discussed.

[1]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[2]  Dongbing Gu,et al.  Neural predictive control for a car-like mobile robot , 2002, Robotics Auton. Syst..

[3]  H. Nijmeijer,et al.  An observer-controller combination for a unicycle mobile robot , 2005 .

[4]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[5]  J. M. D. Silva,et al.  Model Predictive Control of a Mobile Robot Using Linearization , 2022 .

[6]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[7]  Jun-Ho Oh,et al.  Tracking control of a two-wheeled mobile robot using inputoutput linearization , 1999 .

[8]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[9]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[10]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[11]  Marilena Vendittelli,et al.  Control of Wheeled Mobile Robots: An Experimental Overview , 2001 .

[12]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[13]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[14]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[15]  A. Ollero,et al.  Predictive path tracking of mobile robots. Application to the CMU NavLab , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[16]  Antonio Bicchi,et al.  Path tracking control for Dubin's cars , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[17]  Julio E. Normey-Rico,et al.  A Smith-predictor-based generalised predictive controller for mobile robot path-tracking , 1998 .

[18]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[19]  Jorge Angeles,et al.  Kinematics and Dynamics of Multi-Body Systems , 1995 .

[20]  Giuseppe Oriolo,et al.  Modelling and Control of Nonholonomic Mechanical Systems , 1995 .

[21]  Francesco Maria Raimondi,et al.  A new fuzzy robust dynamic controller for autonomous vehicles with nonholonomic constraints , 2005, Robotics Auton. Syst..

[22]  Jang Gyu Lee,et al.  Point stabilization of mobile robots via state space exact feedback linearization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Vijay Kumar,et al.  Control of Mechanical Systems With Rolling Constraints , 1994, Int. J. Robotics Res..

[24]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .