The pricing of options for securities markets with delayed response

The analogue of Black-Scholes formula for vanilla call option price in conditions of (B,S)-securities market with delayed response is derived. A special case of continuous-time version of GARCH is considered. The results are compared with the results of Black and Scholes.

[1]  Robert Buff Uncertain Volatility Models - Theory and Application , 2002 .

[2]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[3]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[4]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[5]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[6]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[7]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[8]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[9]  Bernt Øksendal,et al.  Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .

[10]  Salah-Eldin A. Mohammed,et al.  Stochastic Differential Systems with Memory: Theory, Examples and Applications (Sixth Workshop on Stochastic Analysis) , 1996 .

[11]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[12]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[13]  B. LeBaron,et al.  Nonlinear Dynamics and Stock Returns , 2021, Cycles and Chaos in Economic Equilibrium.

[14]  L. Rogers,et al.  Complete Models with Stochastic Volatility , 1998 .

[15]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[16]  M. Chesney,et al.  Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model , 1989, Journal of Financial and Quantitative Analysis.

[17]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[18]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[19]  R. Elliott,et al.  A General Fractional White Noise Theory And Applications To Finance , 2003 .

[20]  A. V. Svishchuk Hedging of options under mean-square criterion and semi-Markov volatility , 1995 .

[21]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[22]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Mou-Hsiung Chang,et al.  The European option with hereditary price structures: Basic theory , 1999, Appl. Math. Comput..

[25]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[26]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[27]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[28]  Reuben Hersh,et al.  Theory of random evolutions with applications to partial differential equations , 1971 .

[29]  Anatoly Swishchuk,et al.  Random Evolutions and their Applications: New Trends , 2000 .

[30]  Christian Bender,et al.  Arbitrage with fractional Brownian motion , 2007 .

[31]  Ali Süleyman Üstünel,et al.  Stochastic Analysis and Related Topics II , 1993 .

[32]  W. Runggaldier,et al.  Diffusion Approximation in Past Dependent Models and Applications to Option Pricing , 1991 .

[33]  Yaozhong Hu,et al.  A Delayed Black and Scholes Formula , 2006, math/0604640.

[34]  R. Frey Derivative Asset Analysis in Models with Level-Dependent and Stochastic Volatility , 1997 .

[35]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[36]  V. Akgiray Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts , 1989 .

[37]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .