A Classification of Hyper-heuristics Approaches – Revisited

Hyper-heuristics comprise a set of approaches that aim to automate the development of computational search methodologies, initially to address operational research problems but more recently venturing into new domains such as bioinformatics, strategies for games, and software engineering. This chapter overviews previous categorisations of hyper-heuristics and provides a unified classification and definition. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail, and recent research trends are highlighted. Our goals are to clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research. Edmund K. Burke Queen Mary University of London, UK. e-mail: ekb@qmul.ac.uk Graham Kendall University of Nottingham Malaysia Campus, Malaysia. Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science, University of Nottingham, UK. Matthew Hyde at Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science, University of Nottingham, UK. Gabriela Ochoa Computing Science and Mathematics, University of Stirling, UK. Ender Özcan Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science, University of Nottingham, UK. John R. Woodward Queen Mary University of London, UK.

[1]  Gabriela Ochoa,et al.  A unified hyper-heuristic framework for solving bin packing problems , 2014, Expert Syst. Appl..

[2]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[3]  Graham Kendall,et al.  Choice function based hyper-heuristics for multi-objective optimization , 2015, Appl. Soft Comput..

[4]  Mengjie Zhang,et al.  Automated Design of Production Scheduling Heuristics: A Review , 2016, IEEE Transactions on Evolutionary Computation.

[5]  Hugo Terashima-Marín,et al.  Forming hyper-heuristics with GAs when solving 2D-regular cutting stock problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Graham Kendall,et al.  An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation , 2017, Inf. Sci..

[7]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[8]  Graham Kendall,et al.  An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Matthias Fuchs,et al.  High Performance ATP Systems by Combining Several AI Methods , 1997, IJCAI.

[10]  Ben Paechter,et al.  A Lifelong Learning Hyper-heuristic Method for Bin Packing , 2015, Evolutionary Computation.

[11]  Nelishia Pillay,et al.  A review of hyper-heuristics for educational timetabling , 2016, Ann. Oper. Res..

[12]  Graham Kendall,et al.  Grammatical Evolution Hyper-Heuristic for Combinatorial Optimization Problems , 2013, IEEE Transactions on Evolutionary Computation.

[13]  Alex S. Fukunaga,et al.  Automated discovery of composite SAT variable-selection heuristics , 2002, AAAI/IAAI.

[14]  Marko Privosnik The scalability of evolved on line bin packing heuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[15]  Javier G. Marín-Blázquez,et al.  A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients , 2005, IWLCS.

[16]  María Cristina Riff,et al.  DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic , 2010, J. Heuristics.

[17]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[18]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[19]  Gabriela Ochoa,et al.  Grammar-based generation of variable-selection heuristics for constraint satisfaction problems , 2016, Genetic Programming and Evolvable Machines.

[20]  Jonas Mockus,et al.  Bayesian Approach to Global Optimization , 1989 .

[21]  Edmund K. Burke,et al.  A methodology for determining an effective subset of heuristics in selection hyper-heuristics , 2017, Eur. J. Oper. Res..

[22]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[23]  Graham Kendall,et al.  Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation , 2008, J. Oper. Res. Soc..

[24]  Graham Kendall,et al.  Evolving Bin Packing Heuristics with Genetic Programming , 2006, PPSN.

[25]  Jonathan Gratch,et al.  Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study , 1996, J. Artif. Intell. Res..

[26]  Andries Petrus Engelbrecht,et al.  Heuristic space diversity control for improved meta-hyper-heuristic performance , 2015, Inf. Sci..

[27]  Ender Özcan,et al.  Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation , 2017 .

[28]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[29]  Emma Hart,et al.  A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling , 2016, Evolutionary Computation.

[30]  Edmund K. Burke,et al.  Effective learning hyper-heuristics for the course timetabling problem , 2014, Eur. J. Oper. Res..

[31]  Fred Glover,et al.  PROBABILISTIC AND PARAMETRIC LEARNING COMBINATIONS OF LOCAL JOB SHOP SCHEDULING RULES , 1963 .

[32]  Xin Yao,et al.  An Evolutionary Hyper-heuristic for the Software Project Scheduling Problem , 2016, PPSN.

[33]  Gabriela Ochoa,et al.  A benchmark set extension and comparative study for the HyFlex framework , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[34]  Riccardo Poli,et al.  Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic , 2007, Artificial Evolution.

[35]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[36]  Graham Kendall,et al.  A Hyperheuristic Methodology to Generate Adaptive Strategies for Games , 2017, IEEE Transactions on Computational Intelligence and AI in Games.

[37]  Emma Hart,et al.  A Combined Generative and Selective Hyper-heuristic for the Vehicle Routing Problem , 2016, GECCO.

[38]  You Li,et al.  Optimizing the Initialization of Dynamic Decision Heuristics in DPLL SAT Solvers Using Genetic Programming , 2006, EuroGP.

[39]  Moshe Sipper,et al.  Evolutionary Design of FreeCell Solvers , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[40]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[41]  Graham Kendall,et al.  A hyper-heuristic approach to sequencing by hybridization of DNA sequences , 2013, Ann. Oper. Res..

[42]  Riccardo Poli,et al.  Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.

[43]  Peter Ross,et al.  Solving a Real-World Problem Using an Evolving Heuristically Driven Schedule Builder , 1998, Evolutionary Computation.

[44]  Myra B. Cohen,et al.  Learning Combinatorial Interaction Test Generation Strategies Using Hyperheuristic Search , 2015, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[45]  Ali M. S. Zalzala,et al.  Investigating the use of genetic programming for a classic one-machine scheduling problem , 2001 .

[46]  Graham Kendall,et al.  Searching the Hyper-heuristic Design Space , 2014, Cognitive Computation.

[47]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[48]  Ender Özcan,et al.  A tensor-based selection hyper-heuristic for cross-domain heuristic search , 2015, Inf. Sci..

[49]  Alex S. Fukunaga,et al.  Evolving Local Search Heuristics for SAT Using Genetic Programming , 2004, GECCO.

[50]  Graham Kendall,et al.  Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization problems , 2015, Inf. Sci..

[51]  Frédéric Saubion,et al.  Autonomous operator management for evolutionary algorithms , 2010, J. Heuristics.

[52]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[53]  Graham Kendall,et al.  A Dynamic Multiarmed Bandit-Gene Expression Programming Hyper-Heuristic for Combinatorial Optimization Problems , 2015, IEEE Transactions on Cybernetics.

[54]  Per Kristian Lehre,et al.  A runtime analysis of simple hyper-heuristics: to mix or not to mix operators , 2013, FOGA XII '13.

[55]  Eric Soubeiga,et al.  Development and application of hyperheuristics to personnel scheduling , 2003 .

[56]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[57]  Ender Özcan,et al.  Hill Climbers and Mutational Heuristics in Hyperheuristics , 2006, PPSN.

[58]  Reha Uzsoy,et al.  Rapid Modeling and Discovery of Priority Dispatching Rules: An Autonomous Learning Approach , 2006, J. Sched..

[59]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[60]  Graham Kendall,et al.  Iterated local search using an add and delete hyper-heuristic for university course timetabling , 2016, Appl. Soft Comput..

[61]  Graham Kendall,et al.  Automatic Design of a Hyper-Heuristic Framework With Gene Expression Programming for Combinatorial Optimization Problems , 2015, IEEE Transactions on Evolutionary Computation.

[62]  Peter I. Cowling,et al.  An empirical study of hyperheuristics for managing very large sets of low level heuristics , 2012, J. Oper. Res. Soc..

[63]  David Pisinger,et al.  A general heuristic for vehicle routing problems , 2007, Comput. Oper. Res..

[64]  Per Kristian Lehre,et al.  Limits to Learning in Reinforcement Learning Hyper-heuristics , 2016, EvoCOP.

[65]  Graham Kendall,et al.  A graph coloring constructive hyper-heuristic for examination timetabling problems , 2012, Applied Intelligence.

[66]  Robert H. Storer,et al.  Problem and Heuristic Space Search Strategies for Job Shop Scheduling , 1995, INFORMS J. Comput..

[67]  Nhu Binh Ho,et al.  Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems , 2008, Comput. Ind. Eng..

[68]  Peter Ross,et al.  Hyper-heuristics applied to class and exam timetabling problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[69]  Riccardo Poli,et al.  Linear genetic programming of parsimonious metaheuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[70]  Graham Kendall,et al.  A new model and a hyper-heuristic approach for two-dimensional shelf space allocation , 2013, 4OR.

[71]  Natalio Krasnogor,et al.  A Study on the use of ``self-generation'' in memetic algorithms , 2004, Natural Computing.

[72]  Hugo Terashima-Marín,et al.  Hyper-heuristics and classifier systems for solving 2D-regular cutting stock problems , 2005, GECCO '05.

[73]  Ender Özcan,et al.  Policy matrix evolution for generation of heuristics , 2011, GECCO '11.

[74]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[75]  Peter Ross,et al.  A Promising Genetic Algorithm Approach to Job-Shop SchedulingRe-Schedulingand Open-Shop Scheduling Problems , 1993, ICGA.

[76]  Edmund K. Burke,et al.  Solving Examination Timetabling Problems through Adaption of Heuristic Orderings , 2004, Ann. Oper. Res..

[77]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[78]  Sanja Petrovic,et al.  HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search , 2011, EvoCOP.

[79]  Peter Ross,et al.  Constructive hyper-heuristics in class timetabling , 2005, 2005 IEEE Congress on Evolutionary Computation.

[80]  Peter Ross,et al.  A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems , 1994, ECAI.

[81]  Graham Kendall,et al.  A simulated annealing hyper-heuristic methodology for flexible decision support , 2012, 4OR.

[82]  Graham Kendall,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics , 2010, IEEE Transactions on Evolutionary Computation.

[83]  Graham Kendall,et al.  Monte Carlo hyper-heuristics for examination timetabling , 2012, Ann. Oper. Res..

[84]  Graham Kendall,et al.  Exploring Hyper-heuristic Methodologies with Genetic Programming , 2009 .

[85]  Ender Özcan,et al.  An Experimental Study on Hyper-heuristics and Exam Timetabling , 2006, PATAT.

[86]  Ender Özcan,et al.  CHAMP: Creating heuristics via many parameters for online bin packing , 2016, Expert Syst. Appl..

[87]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[88]  Graham Kendall,et al.  Competitive travelling salesmen problem: A hyper-heuristic approach , 2013, J. Oper. Res. Soc..

[89]  Graham Kendall,et al.  Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one , 2007, GECCO '07.

[90]  Rong Qu,et al.  No . NOTTCS-TR-2006-1 Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems , 2006 .

[91]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[92]  Andrew J. Parkes,et al.  Exploring the landscape of the space of heuristics for local search in SAT , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).