Local error analysis for approximate solutions of hyperbolic conservation laws

We consider approximate solutions to nonlinear hyperbolic conservation laws. If the exact solution is unavailable, the truncation error may be the only quantitative measure for the quality of the approximation. We propose a new way of estimating the local truncation error, through the use of localized test-functions. In the convex scalar case, they can be converted intoLloc∞ estimates, following theLip′ convergence theory developed by Tadmor et al. Comparisons between the local truncation error and theLloc∞-error show remarkably similar behavior. Numerical results are presented for the convex scalar case, where the theory is valid, as well as for nonconvex scalar examples and the Euler equations of gas dynamics. The local truncation error has proved a reliable smoothness indicator and has been implemented in adaptive algorithms in [Karni, Kurganov and Petrova, J. Comput. Phys. 178 (2002) 323–341].

[1]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[2]  Eitan Tadmor,et al.  The convergence rate of approximate solutions for nonlinear scalar conservation laws. Final Report , 1991 .

[3]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[4]  E. Tadmor Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .

[5]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[6]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[7]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[8]  Eitan Tadmor,et al.  Pointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions , 1999 .

[9]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[10]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .

[11]  Endre Süli,et al.  A Posteriori Error Analysis And Adaptivity For Finite Element Approximations Of Hyperbolic Problems , 1997 .

[12]  Tamir Tassa,et al.  The convergence rate of Godunov type schemes , 1994 .

[13]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[14]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[15]  Gh. Adam,et al.  A first-order perturbative numerical method for the solution of the radial schrödinger equation , 1976 .

[16]  E. Tadmor,et al.  Pointwise convergence rate for nonlinear conservation laws , 1999 .

[17]  Endre Süli,et al.  A Posteriori Error Indicators for Hyperbolic Problems , 1997 .

[18]  R. LeVeque Approximate Riemann Solvers , 1992 .

[19]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[20]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.