Fiber optic system for in-vivo sizing of proteins in animal eye lenses

A compact fiber optic system, utilizing a lensless backscatter fiber optic probe, and a semiconductor laser is used as a non-invasive tool for in vivo characterization of the proteins in the eye lens of several animals. The system exploits the extremely sensitive technique of dynamic light scattering, which uses a laser beam to probe the temporal characteristics of the proteins present in eye lens fluid. The technique, with appropriate electronics and signal processing provides a rapid means of determining the size of the (alpha) -crystallin in the protein-water system. Changes in the size of the protein molecules can be tracked over the age of the eye lens; an abrupt increase in size is associated with the early cataractous formation. This paper describes the fiber optic system and discusses results obtained from measurements made on sedated rabbits, pigs and cats. A clear difference in the size of the (alpha) -crystallin of normal and cataractous lenses is observed.