Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation

PurposeThe PiCCO System is a relatively new device allowing intermittent cardiac output monitoring by aortic transpulmonary thermodilution technique (Aorta intermittent) and continuous cardiac output monitoring by pulse contour analysis (Aorta continuous). The objective of this study was to assess the level of agreement of Aorta intermittent and Aorta continuous with intermittent (PA intermittent) and continuous cardiac output (PA continuous) measured through a special pulmonary artery catheter (Vigilance System SvO2/CCO Monitor) in patients undergoing singleor double-lung transplantation.MethodsMeasurements were obtained in 58 patients: at four time points in patients undergoing single-lung transplantation and at six time points in those undergoing double-lung transplantation. Bland and Altman and correlation analyses were used for statistical evaluation.ResultsWe found close agreement between the techniques. Mean bias between Aorta intermittent and PA intermittent and between Aorta continuous and PA continuous was 0.18 L·min−1 (2SD of differences between methods = 1.59 L·min−1) and −0.07 L·min−1 (2SD of differences between methods = 1.46 L·min−1) respectively. Mean bias between PA continuous and PA intermittent and Aorta continuous and PA intermittent was 0.15 L·min−1 (2SD of differences between methods = 1.39 L·min−1) and 0.08 L·min−1 (2SD of differences between methods = 1.43 L·min−1).ConclusionMeasurements with the aortic transpulmonary thermodilution technique give continuous and intermittent values that agree with the pulmonary thermodilution method which is still the current clinical standard.RésuméObjectifLe PiCCO System est un appareil, relativement nouveau, de monitorage intermittent du débit cardiaque par la technique de thermodilution aortique transpulmonaire (aortique intermittente) et de monitorage continu du débit cardiaque par l’analyse de la conformation du pouls (aortique continue). L’objectif de l’étude était d’évaluer le degré de concordance entre la technique aortique intermittente et aortique continue, réalisée par la mesure du débit cardiaque intermittente (AP intermittente) et continue (AP continue) par un cathéter artériel pulmonaire spécial (Vigilance System SvO2/CCO Monitor) chez des patients qui subissent la greffe d’un ou des deux poumons.MéthodeLes mesures ont été prises à quatre moments déterminés chez 58 patients devant subir une greffe unipulmonaire et à six moments chez ceux qui devaient subir une greffe bipulmonaire. L’analyse de Bland et Altman et l’analyse de corrélation ont servi à l’évaluation statistique.RésultatsNous avons trouvé une étroite concordance entre les techniques. Le biais moyen entre la technique aortique intermittente et AP intermittente et entre Aortique continue et AP continue a été respectivement de 0,18 L·min−1 (différence de 2 écarts types entre les méthodes = 1,59 L·min−1 ) et − 0,07 L·min−1 (différence de 2 écarts types = 1,46 L·min−1 ). Le biais moyen entre AP continue et AP intermittente, et entre Aortique continue et Aortique intermittente a été de 0,15 L·min−1 (différence de 2 écarts types = 1,39 L·min−1) et 0,08 L·min−1 (différence de 2 écarts types =1,43 L·min−1 ).ConclusionLes mesures obtenues selon la technique de thermodilution aortique transpulmonaire ont fourni des valeurs continues et intermittentes qui concordent avec celle de la thermodilution pulmonaire, laquelle demeure la norme clinique.

[1]  B. Böttiger,et al.  Continuous cardiac output monitoring – further applications of the thermodilution principle , 1999, Intensive Care Medicine.

[2]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[3]  I G Tzenkov,et al.  Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. , 2003, British journal of anaesthesia.

[4]  A. Weyland,et al.  Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. , 1999, Journal of cardiothoracic and vascular anesthesia.

[5]  B. Reichart,et al.  Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. , 1999, Critical care medicine.

[6]  J M Bland,et al.  Statistical methods for assessing agreement between two methods of clinical measurement , 1986 .

[7]  E. Schmid,et al.  Continuous thermodilution cardiac output: clinical validation against a reference technique of known accuracy , 1999, Intensive Care Medicine.

[8]  J. Eledjam,et al.  Cardiac output measurement in critically ill patients: comparison of continuous and conventional thermodilution techniques , 1995 .

[9]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[10]  H. Reichenspurner,et al.  Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. , 1999, The Annals of thoracic surgery.

[11]  A. Liebold,et al.  Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. , 1999, British journal of anaesthesia.

[12]  G. Della Rocca,et al.  Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. , 2002, British journal of anaesthesia.

[13]  F. Mihm,et al.  Continuous Cardiac Output Catheters: Delay in In Vitro Response Time after Controlled Flow Changes , 1998, Anesthesiology.