Design of high-performance ion-doped CoP systems for hydrogen evolution: From multi-level screening calculations to experiment

[1]  M. Liu,et al.  Interface-engineered MoS2/CoS/NF bifunctional catalysts for highly-efficient water electrolysis , 2022, Journal of Energy Chemistry.

[2]  Qiang Zhao,et al.  Atomic‐Level Design of Active Site on Two‐Dimensional MoS2 toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling , 2022, Advanced Functional Materials.

[3]  Jinghong Li,et al.  Interfaces Decrease the Alkaline Hydrogen-Evolution Kinetics Energy Barrier on NiCoP/Ti3C2Tx MXene. , 2022, ACS nano.

[4]  Shufei Xu,et al.  Surface modulation of MoS2/O-ZnIn2S4 to boost photocatalytic H2 evolution , 2022, Journal of Energy Chemistry.

[5]  Yongchao Huang,et al.  Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods , 2021, Journal of Energy Chemistry.

[6]  Bo Sun,et al.  Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning. , 2021, The journal of physical chemistry letters.

[7]  Xianfa Rao,et al.  Structure-regulated Ru particles decorated P-vacancy-rich CoP as a highly active and durable catalyst for NaBH4 hydrolysis. , 2021, Journal of colloid and interface science.

[8]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[9]  Yadong Li,et al.  Photoinduction of Cu Single Atoms Decorated on UiO-66-NH2 for Enhanced Photocatalytic Reduction of CO2 to Liquid Fuels. , 2020, Journal of the American Chemical Society.

[10]  Q. Yan,et al.  Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts , 2020, Nature Communications.

[11]  Lei Wang,et al.  Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting , 2019, Journal of Energy Chemistry.

[12]  W. Goddard,et al.  Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations. , 2019, Journal of the American Chemical Society.

[13]  Cees Witteveen,et al.  Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions , 2019, Evolutionary Computation.

[14]  Chaoyi Yan,et al.  Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. , 2019, Angewandte Chemie.

[15]  Yadong Li,et al.  Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production , 2019, Nano Energy.

[16]  N. Kim,et al.  Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications , 2018, Progress in Materials Science.

[17]  J. Ding,et al.  Hollow Mo-doped CoP nanoarrays for efficient overall water splitting , 2018, Nano Energy.

[18]  Dandan Zhao,et al.  Enhancing Oxygen Evolution Electrocatalysis via the Intimate Hydroxide-Oxide Interface. , 2018, ACS nano.

[19]  L. Gu,et al.  Preparation of High‐Percentage 1T‐Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[20]  H. Su,et al.  Anisotropic Electronic Characteristics, Adsorption, and Stability of Low-Index BiVO4 Surfaces for Photoelectrochemical Applications. , 2018, ACS applied materials & interfaces.

[21]  Yadong Li,et al.  Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. , 2018, Journal of the American Chemical Society.

[22]  L. Mai,et al.  MoB/g-C3 N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. , 2018, Angewandte Chemie.

[23]  Abdullah M. Asiri,et al.  Enhanced Electrocatalysis for Energy‐Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter , 2017 .

[24]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[25]  N. Lewis,et al.  Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction , 2016 .

[26]  Qing Tang,et al.  Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles , 2016 .

[27]  Shuhong Yu,et al.  An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation , 2015, Nature Communications.

[28]  Kaixue Wang,et al.  Multifunctional Au–Co@CN Nanocatalyst for Highly Efficient Hydrolysis of Ammonia Borane , 2015 .

[29]  Abdullah M. Asiri,et al.  Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. , 2014, Journal of the American Chemical Society.

[30]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[31]  J. Hald,et al.  On the role of Nb in Z-phase formation in a 12% Cr steel , 2010 .

[32]  J. Nørskov,et al.  Large-scale, density functional theory-based screening of alloys for hydrogen evolution , 2007 .

[33]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[34]  S. Nayak,et al.  First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies. , 2004, The Journal of chemical physics.

[35]  J K Norsko,et al.  Chemisorption on metal surfaces , 1990 .

[36]  S. Rundqvist,et al.  Phosphides of the B31 (MnP) Structure Type. , 1961 .

[37]  W. Chu,et al.  Controllable Surface Reorganization Engineering on Cobalt Phosphide Nanowire Arrays for Efficient Alkaline Hydrogen Evolution Reaction , 2018, Advanced materials.