Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation

In this paper, a new conservative difference scheme is proposed for solving the nonlinear space-fractional Schrodinger equation. The Riesz space-fractional derivative is approximated by the second-order accurate weighted and shifted Grunwald difference operator. Building on a careful analysis of this operator, the conservation properties including the mass and energy are analyzed and some norm equivalences are established. Then the numerical solution is shown to be bounded in various norms, uniformly with respect to the discretization parameters, and optimal order bounds on the global error of the scheme in the l 2 norm, semi- H α / 2 norm and l ∞ norm are derived. The uniform bounds on the numerical solutions as well as the error bounds hold unconditionally, in the sense that no restriction on the size of the time step in terms of the spatial mesh size needs to be assumed. Numerical tests are performed to support our theoretical results.

[1]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[2]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[3]  Weihua Deng,et al.  Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators , 2014 .

[4]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[6]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[7]  Kay L Kirkpatrick,et al.  On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions , 2011, 1108.6136.

[8]  Chengming Huang,et al.  An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation , 2016, J. Comput. Phys..

[9]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[10]  B. Guo,et al.  Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation , 2012 .

[11]  Tingchun Wang,et al.  Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation , 2014 .

[12]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and Their Applications $(I)$ , 2014 .

[13]  Well-posedness and Ill-posedness for the cubic fractional Schr\"odinger equations , 2013, 1311.0082.

[14]  S. Secchi Ground state solutions for nonlinear fractional Schrödinger equations in RN , 2012, 1208.2545.

[15]  Neville J. Ford,et al.  A numerical method for the fractional Schrödinger type equation of spatial dimension two , 2013 .

[16]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[17]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[18]  Chengming Huang,et al.  A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation , 2014, Numerical Algorithms.

[19]  Qun Liu,et al.  Finite difference method for time-space-fractional Schrödinger equation , 2015, Int. J. Comput. Math..

[20]  Sergei F. Mingaleev,et al.  Effects of nonlocal dispersive interactions on self-trapping excitations , 1997 .

[21]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[22]  Zhi-Zhong Sun,et al.  A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..

[23]  Chengming Huang,et al.  An energy conservative difference scheme for the nonlinear fractional Schrödinger equations , 2015, J. Comput. Phys..

[24]  P. Markowich,et al.  Numerical study of fractional nonlinear Schrödinger equations , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[26]  Weihua Deng,et al.  A series of high‐order quasi‐compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives , 2013, 1312.7069.

[27]  Jie Xin,et al.  Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[28]  A. Ionescu,et al.  Nonlinear fractional Schrödinger equations in one dimension , 2012, 1209.4943.

[29]  Changpin Li,et al.  Finite difference Methods for fractional differential equations , 2012, Int. J. Bifurc. Chaos.

[30]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[31]  Harish Sankaranarayanan,et al.  Higher order Grünwald approximations of fractional derivatives and fractional powers of operators , 2014 .

[32]  S. Mingaleev,et al.  Models for Energy and Charge Transport and Storage in Biomolecules , 1999, Journal of biological physics.

[33]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[34]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[35]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[36]  Wei Yang,et al.  Maximum-norm error analysis of a difference scheme for the space fractional CNLS , 2015, Appl. Math. Comput..

[37]  I. Podlubny Fractional differential equations , 1998 .

[38]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[39]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[40]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[41]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[42]  A. Atangana,et al.  Stability and convergence of the space fractional variable-order Schrödinger equation , 2013 .

[43]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[44]  S. Secchi,et al.  Soliton dynamics for fractional Schrödinger equations , 2013, 1305.1804.

[45]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[46]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[47]  Chengming Huang,et al.  Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions , 2016, Comput. Math. Appl..

[48]  Tingchun Wang,et al.  Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension , 2014, J. Sci. Comput..

[49]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[50]  Weizhu Bao,et al.  Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars , 2011, J. Comput. Phys..

[51]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[52]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[53]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2010, 1009.4042.

[54]  P. Amore,et al.  Collocation method for fractional quantum mechanics , 2009, 0912.2562.

[55]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[56]  B. Guo,et al.  Global Well-Posedness for the Fractional Nonlinear Schrödinger Equation , 2010 .

[57]  Wei Yang,et al.  A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations , 2014, J. Comput. Phys..