Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms

[1]  H. Yin,et al.  Rhodium Encapsulated within Silicalite‐1 Zeolite as Highly Efficient Catalyst for Nitrous Oxide Decomposition: From Single Atoms to Nanoclusters and Nanoparticles , 2021 .

[2]  P. Afanasiev,et al.  Dynamics of Single Pt Atoms on Alumina during CO Oxidation Monitored by Operando X-ray and Infrared Spectroscopies , 2019, ACS Catalysis.

[3]  Wei Li,et al.  Single-site Pt/La-Al2O3 stabilized by barium as an active and stable catalyst in purifying CO and C3H6 emissions , 2019, Applied Catalysis B: Environmental.

[4]  M. Engelhard,et al.  Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen , 2019, Nature Communications.

[5]  M. Machida,et al.  Redox Dynamics of Pd Supported on CeO2–ZrO2 during Oxygen Storage/Release Cycles Analyzed by Time-Resolved in Situ Reflectance Spectroscopy , 2018, The Journal of Physical Chemistry C.

[6]  Jian Liu,et al.  Combination of Density Functional Theory and Microkinetic Study to the Mn-Doped CeO2 Catalysts for CO Oxidation: A Case Study to Understand the Doping Metal Content , 2018, The Journal of Physical Chemistry C.

[7]  Hyunjoo J. Lee,et al.  Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. , 2018, Journal of the American Chemical Society.

[8]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[9]  Xiaoqing Pan,et al.  Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation , 2018, Proceedings of the National Academy of Sciences.

[10]  Jin-Xun Liu,et al.  A Linear Scaling Relation for CO Oxidation on CeO2-Supported Pd , 2018, Journal of the American Chemical Society.

[11]  Do Heui Kim,et al.  Influence of the Defect Concentration of Ceria on the Pt Dispersion and the CO Oxidation Activity of Pt/CeO2 , 2018 .

[12]  Yong Wang,et al.  Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation , 2017, Science.

[13]  Feng Chen,et al.  The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the Orange II , 2017 .

[14]  J. Grunwaldt,et al.  Tuning the Structure of Platinum Particles on Ceria In Situ for Enhancing the Catalytic Performance of Exhaust Gas Catalysts. , 2017, Angewandte Chemie.

[15]  Xiaoqing Pan,et al.  Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2. , 2017, Journal of the American Chemical Society.

[16]  Hyunjoon Lee,et al.  Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO2 Catalysts for CO Oxidation , 2017 .

[17]  Angelica D. Benavidez,et al.  Atomically Dispersed Pd–O Species on CeO2(111) as Highly Active Sites for Low-Temperature CO Oxidation , 2017, ACS catalysis.

[18]  Bin Zhang,et al.  Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation , 2017, Nature Communications.

[19]  Konstantin M. Neyman,et al.  Redox-mediated conversion of atomically dispersed platinum to sub-nanometer particles , 2017 .

[20]  Junjie Li,et al.  Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst , 2017 .

[21]  Do Heui Kim,et al.  How Pt Interacts with CeO2 under the Reducing and Oxidizing Environments at Elevated Temperature: The Origin of Improved Thermal Stability of Pt/CeO2 Compared to CeO2 , 2016 .

[22]  M. Willinger,et al.  Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria , 2016 .

[23]  Konstantin M. Neyman,et al.  Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? , 2016, Physical chemistry chemical physics : PCCP.

[24]  P. Christopher,et al.  Utilizing Quantitative in Situ FTIR Spectroscopy To Identify Well-Coordinated Pt Atoms as the Active Site for CO Oxidation on Al2O3-Supported Pt Catalysts , 2016 .

[25]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[26]  F. Negreiros,et al.  Creating single-atom Pt-ceria catalysts by surface step decoration , 2016, Nature Communications.

[27]  Xiujian Zhao,et al.  Metal Support Interaction in Pt Nanoparticles Partially Confined in the Mesopores of Microsized Mesoporous CeO2 for Highly Efficient Purification of Volatile Organic Compounds , 2016 .

[28]  J. Thomas Catalysis: Tens of thousands of atoms replaced by one , 2015, Nature.

[29]  Weiguo Song,et al.  Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation , 2015 .

[30]  Jakub Szlachetko,et al.  Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts. , 2015, Angewandte Chemie.

[31]  M. Flytzani-Stephanopoulos,et al.  A common single-site Pt(II)-O(OH)x- species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction. , 2015, Journal of the American Chemical Society.

[32]  M. Mavrikakis,et al.  Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides , 2014, Science.

[33]  Konstantin M. Neyman,et al.  Oxygen vacancies in self-assemblies of ceria nanoparticles , 2014 .

[34]  Jiqing Lu,et al.  Oxygen vacancy promoted CO oxidation over Pt/CeO 2 catalysts: A reaction at Pt-CeO 2 interface , 2014 .

[35]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[36]  Piyasan Praserthdam,et al.  A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. , 2014, Angewandte Chemie.

[37]  R. Jin,et al.  Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. , 2014, Journal of the American Chemical Society.

[38]  G. Somorjai,et al.  Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. , 2013, Journal of the American Chemical Society.

[39]  G. M. Stocks,et al.  CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. , 2013, Journal of the American Chemical Society.

[40]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[41]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[42]  M. Flytzani-Stephanopoulos,et al.  Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. , 2013, Journal of the American Chemical Society.

[43]  G. Henkelman,et al.  CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. , 2013, The journal of physical chemistry letters.

[44]  Fan Zheng,et al.  Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study. , 2012, Nano letters.

[45]  G. Somorjai,et al.  In situ oxidation study of Pt(110) and its interaction with CO. , 2011, Journal of the American Chemical Society.

[46]  Konstantin M. Neyman,et al.  Density Functional Modeling of the Interactions of Platinum Clusters with CeO2 Nanoparticles of Different Size , 2011 .

[47]  Thorsten Staudt,et al.  Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. , 2011, Nature materials.

[48]  Konstantin M. Neyman,et al.  Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale , 2010 .

[49]  M. Hatanaka,et al.  Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond , 2010 .

[50]  Konstantin M. Neyman,et al.  Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. , 2010, Chemical communications.

[51]  Lin-Wang Wang,et al.  Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage , 2010, Science.

[52]  Yunsheng Ma,et al.  Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. , 2009, Journal of the American Chemical Society.

[53]  Kangnian Fan,et al.  Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation , 2009 .

[54]  Lin-wang Wang,et al.  Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. , 2009, Nano letters.

[55]  Konstantin M. Neyman,et al.  Density functional studies of model cerium oxide nanoparticles. , 2008, Physical chemistry chemical physics : PCCP.

[56]  D. Weng,et al.  Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides : Effect on the OSC performance , 2008 .

[57]  D. Weng,et al.  The SMSI between supported platinum and CeO2-ZrO2-La2O3 mixed oxides in oxidative atmosphere , 2007 .

[58]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[59]  J. Regalbuto Catalyst Preparation : Science and Engineering , 2006 .

[60]  R. Kikuchi,et al.  Determination of dispersion of precious metals on CeO2-containing supports , 2005 .

[61]  Dionisios G. Vlachos,et al.  Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt , 2004 .

[62]  A. Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[63]  Zhong Lin Wang,et al.  Polyhedral Shapes of CeO2 Nanoparticles , 2003 .

[64]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[65]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[66]  E. Fridell,et al.  Influence of pre-treatment on the low-temperature activity of Pt/Ceria , 1999 .

[67]  G. Herman Surface structure determination of CeO 2 ( 001 ) by angle-resolved mass spectroscopy of recoiled ions , 1999 .

[68]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[69]  Raymond J. Gorte,et al.  CO oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts , 1997 .

[70]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  J. Vohs,et al.  Effect of Ceria Structure on Oxygen Migration for Rh/Ceria Catalysts , 1996 .

[74]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[75]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[76]  R. Hicks,et al.  Carbon monoxide restructuring of palladium crystallite surfaces , 1990 .

[77]  Christina Rudy Smith The National Archives and Records Administration , 1989 .

[78]  P. Mars,et al.  Oxidations carried out by means of vanadium oxide catalysts , 1954 .