Plasmonic laser antenna

The authors have demonstrated a surface plasmon device composed of a resonant optical antenna integrated on the facet of a commercial diode laser, termed a plasmonic laser antenna. This device generates enhanced and spatially confined optical near fields. Spot sizes of a few tens of nanometers have been measured at a wavelength ∼0.8μm. This device can be implemented in a wide variety of semiconductor lasers emitting in spectral regions ranging from the visible to the far infrared, including quantum cascade lasers. It is potentially useful in many applications including near-field optical microscopes, optical data storage, and heat-assisted magnetic recording.

[1]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[2]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[3]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[4]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[5]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[6]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[7]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[8]  Matthias Wuttig,et al.  High-power laser light source for near-field optics and its application to high-density optical data storage , 1999 .

[9]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[10]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[11]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[12]  D. Litvinov,et al.  Physics of patterned magnetic medium recording: Design considerations , 2005 .

[13]  Petr I. Nikitin,et al.  Phase jumps and interferometric surface plasmon resonance imaging , 1999 .

[14]  Y. Martin,et al.  Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution , 1995, Science.

[15]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[16]  James A. Bain,et al.  Laser Diode Active Height Control for Near Field Optical Storage , 2006 .

[17]  T Matsumoto,et al.  Writing 40 nm marks by using a beaked metallic plate near-field optical probe. , 2006, Optics letters.

[18]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[19]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[20]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[21]  James A. Bain,et al.  Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser , 2003 .

[22]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[23]  Wolfgang Knoll,et al.  Surface–plasmon microscopy , 1988, Nature.

[24]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[25]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[26]  Lambertus Hesselink,et al.  Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage , 2002 .