1 H, 15 N and 13 C chemical shift assignments of the N-terminal domain of the two isoforms of the human apolipoprotein E

[1]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution , 2021, NMR with Biological Macromolecules in Solution.

[2]  K. Garai,et al.  Apolipoprotein E4 exhibits intermediates with domain interaction. , 2020, Biochimica et biophysica acta. Proteins and proteomics.

[3]  T. B. Sil,et al.  High‐affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid‐β , 2019, The FEBS journal.

[4]  Woonghee Lee,et al.  NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy , 2014, Bioinform..

[5]  K. Kuwata,et al.  Acid-induced Molten Globule State of a Prion Protein , 2014, The Journal of Biological Chemistry.

[6]  D. Holtzman,et al.  The Binding of Apolipoprotein E to Oligomers and Fibrils of Amyloid-β Alters the Kinetics of Amyloid Aggregation , 2014, Biochemistry.

[7]  M. Williamson Using chemical shift perturbation to characterise ligand binding. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[8]  A. Bax,et al.  Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks , 2013, Journal of Biomolecular NMR.

[9]  K. Makabe,et al.  The molten globule of β(2)-microglobulin accumulated at pH 4 and its role in protein folding. , 2013, Journal of molecular biology.

[10]  K. Garai,et al.  Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer’s disease , 2012, Proceedings of the National Academy of Sciences.

[11]  L. Kay,et al.  Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. , 2011, The journal of physical chemistry. B.

[12]  M. Gross,et al.  Hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry determine the interface and dynamics of apolipoprotein E oligomerization. , 2011, Biochemistry.

[13]  Jianglei Chen,et al.  Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions , 2011, Proceedings of the National Academy of Sciences.

[14]  Yang Shen,et al.  Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts , 2010, Journal of biomolecular NMR.

[15]  Y. Cordeiro,et al.  The p53 Core Domain Is a Molten Globule at Low pH , 2009, The Journal of Biological Chemistry.

[16]  Jianjun Wang,et al.  A Unified Scheme for Initiation and Conformational Adaptation of Human Apolipoprotein E N-terminal Domain upon Lipoprotein Binding and for Receptor Binding Activity* , 2009, Journal of Biological Chemistry.

[17]  Jianglei Chen,et al.  A complete backbone spectral assignment of lipid-free human apolipoprotein E (apoE) , 2008, Biomolecular NMR assignments.

[18]  K. Weisgraber,et al.  Apolipoprotein E structure: insights into function. , 2006, Trends in biochemical sciences.

[19]  D. Hoyt,et al.  A complete backbone assignment of the apolipoprotein E LDL receptor binding domain , 2005, Journal of biomolecular NMR.

[20]  D. Torchia,et al.  Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach , 2003, Journal of biomolecular NMR.

[21]  B. Rupp,et al.  Apolipoprotein E4 Forms a Molten Globule , 2002, The Journal of Biological Chemistry.

[22]  WARREN J. STRITTMATTER,et al.  Apolipoprotein E and Alzheimer's Disease , 2000, Annals of the New York Academy of Sciences.

[23]  A. Palmer,et al.  Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. , 1999, Journal of magnetic resonance.

[24]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[25]  Daiwen Yang,et al.  TROSY Triple-Resonance Four-Dimensional NMR Spectroscopy of a 46 ns Tumbling Protein , 1999 .

[26]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Kay,et al.  Solution NMR spectroscopy beyond 25 kDa. , 1997, Current opinion in structural biology.

[29]  L. Kay,et al.  An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C-labeled proteins , 1996, Journal of biomolecular NMR.

[30]  K. Weisgraber,et al.  Human Apolipoprotein E4 Domain Interaction , 1996, The Journal of Biological Chemistry.

[31]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[32]  P. Lansbury,et al.  Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Agard,et al.  Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. , 1994 .

[34]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[35]  L. Kay,et al.  A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins , 1993 .

[36]  T. Logan,et al.  A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments , 1993, Journal of biomolecular NMR.

[37]  S. Grzesiek,et al.  Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization , 1993 .

[38]  Thomas Wisniewski,et al.  Apolipoprotein E: A pathological chaperone protein in patients with cerebral and systemic amyloid , 1992, Neuroscience Letters.

[39]  D A Agard,et al.  Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. , 1991, Science.

[40]  K. Weisgraber Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. , 1990, Journal of lipid research.

[41]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[42]  K. Weisgraber Apolipoprotein E: structure-function relationships. , 1994, Advances in protein chemistry.