Resistivity imaging with controlled-source electromagnetic data: depth and data weighting
暂无分享,去创建一个
[1] M. Clemens,et al. Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .
[2] J. Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[3] David L. Alumbaugh,et al. On the physics of the marine controlled-source electromagnetic method , 2007 .
[4] Philip E. Gill,et al. Practical optimization , 1981 .
[5] P. Wannamaker,et al. Three-dimensional magnetotelluric modeling using difference equations Theory and comparisons to integral equation solutions , 1993 .
[6] David Andreis,et al. Controlled-source electromagnetic imaging on the Nuggets-1 reservoir , 2006 .
[7] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[8] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[9] G. W. Hohmann,et al. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .
[10] R. Mackie,et al. Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .
[11] René-Édouard Plessix,et al. Special Section — Marine Controlled-Source Electromagnetic Methods Detecting hydrocarbon reservoirs from CSEM data in complex settings: Application to deepwater Sabah, Malaysia , 2007 .
[12] W. A. Mulder,et al. A multigrid solver for 3D electromagnetic diffusion , 2006 .
[13] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[14] Claude Lemaréchal,et al. Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..
[15] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[16] Gregory A. Newman,et al. 20. Electromagnetic Modeling and Inversion on Massively Parallel Computers , 1999 .
[17] Uri M. Ascher,et al. Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..
[18] R. Plessix. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .
[19] E. Süli,et al. A convergence analysis of Yee's scheme on nonuniform grids , 1994 .
[20] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[21] A non-linear least-square theory for inverse problems A non-linear least-square theory for inverse p , 1989 .
[22] Gregory A. Newman,et al. Solution strategies for two- and three-dimensional electromagnetic inverse problems , 2000 .
[23] T. Habashy,et al. Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .
[24] G. W. Hohmann,et al. 4. Electromagnetic Theory for Geophysical Applications , 1987 .
[25] G. Newman,et al. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .
[26] René-Édouard Plessix,et al. An approach for 3D multisource, multifrequency CSEM modeling , 2007 .
[27] E. Haber,et al. Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .
[28] Paul T. Boggs,et al. Solution accelerators for large-scale three-dimensional electromagnetic inverse problems : Electromagnetic characterization of buried obstacles , 2004 .
[29] D. L. Alumbaugh,et al. Three-dimensional electromagnetic modeling and inversion on massively parallel computers , 1996 .
[30] L. Knizhnerman,et al. Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .
[31] E. Haber,et al. Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .
[32] Paul T. Boggs,et al. Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .
[33] R. Plessix,et al. Frequency-domain finite-difference amplitude-preserving migration , 2004 .
[34] Rune Mittet,et al. A two-step approach to depth migration of low frequency electromagnetic data. , 2005 .
[35] Uri M. Ascher,et al. Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..
[36] G. Chavent,et al. Identification de la Non-Linearité D'Une équation Parabolique Quasilineaire , 1974 .
[37] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[38] James J. Carazzone,et al. Three Dimensional Imaging of Marine CSEM Data , 2005 .
[39] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[40] E. Haber. Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .
[41] Alexander G. Ramm,et al. Electromagnetic inverse problems with surface measurements at low frequencies , 1989 .
[42] Lucy MacGregor,et al. Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .