Resistivity imaging with controlled-source electromagnetic data: depth and data weighting

We discuss some computational aspects of resistivity imaging by inversion of offshore controlled-source electromagnetic data. We adopt the classic approach to imaging by formulating it as an inverse problem. A weighted least-squares functional measures the misfit between synthetic and observed data. Its minimization by a quasi-Newton algorithm requires the gradient of the functional with respect to the model parameters. We compute the gradient with the adjoint-state technique. Preconditioners can improve the convergence of the inversion. Diagonal preconditioner based on a Born approximation are commonly used. In the context of CSEM inversion, the Born approximation is not really accurate, this limits the possibility of estimating a correct approximation of the Hessian in a smooth medium or, in fact, in any reference background that does not roughly account for the resistors. We hence rely on the limited memory BFGS approximation of the inverse of the Hessian and we improve the inversion convergence with the help of a heuristic data and depth weighting. Based on a numerical example, we show that a simple exponential depth weighting combined with an offset or frequency data weighting significantly improves the convergence rate of a deep-water controlled-source electromagnetic data inversion.

[1]  M. Clemens,et al.  Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .

[2]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[3]  David L. Alumbaugh,et al.  On the physics of the marine controlled-source electromagnetic method , 2007 .

[4]  Philip E. Gill,et al.  Practical optimization , 1981 .

[5]  P. Wannamaker,et al.  Three-dimensional magnetotelluric modeling using difference equations­ Theory and comparisons to integral equation solutions , 1993 .

[6]  David Andreis,et al.  Controlled-source electromagnetic imaging on the Nuggets-1 reservoir , 2006 .

[7]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[8]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[9]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[10]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[11]  René-Édouard Plessix,et al.  Special Section — Marine Controlled-Source Electromagnetic Methods Detecting hydrocarbon reservoirs from CSEM data in complex settings: Application to deepwater Sabah, Malaysia , 2007 .

[12]  W. A. Mulder,et al.  A multigrid solver for 3D electromagnetic diffusion , 2006 .

[13]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[14]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[15]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[16]  Gregory A. Newman,et al.  20. Electromagnetic Modeling and Inversion on Massively Parallel Computers , 1999 .

[17]  Uri M. Ascher,et al.  Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..

[18]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[19]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[20]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[21]  A non-linear least-square theory for inverse problems A non-linear least-square theory for inverse p , 1989 .

[22]  Gregory A. Newman,et al.  Solution strategies for two- and three-dimensional electromagnetic inverse problems , 2000 .

[23]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[24]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[25]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[26]  René-Édouard Plessix,et al.  An approach for 3D multisource, multifrequency CSEM modeling , 2007 .

[27]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[28]  Paul T. Boggs,et al.  Solution accelerators for large-scale three-dimensional electromagnetic inverse problems : Electromagnetic characterization of buried obstacles , 2004 .

[29]  D. L. Alumbaugh,et al.  Three-dimensional electromagnetic modeling and inversion on massively parallel computers , 1996 .

[30]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[31]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[32]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[33]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[34]  Rune Mittet,et al.  A two-step approach to depth migration of low frequency electromagnetic data. , 2005 .

[35]  Uri M. Ascher,et al.  Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..

[36]  G. Chavent,et al.  Identification de la Non-Linearité D'Une équation Parabolique Quasilineaire , 1974 .

[37]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[38]  James J. Carazzone,et al.  Three Dimensional Imaging of Marine CSEM Data , 2005 .

[39]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[40]  E. Haber Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .

[41]  Alexander G. Ramm,et al.  Electromagnetic inverse problems with surface measurements at low frequencies , 1989 .

[42]  Lucy MacGregor,et al.  Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .