Upper bounds on the non-3-colourability threshold of random graphs
暂无分享,去创建一个
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] B. D. Bunday,et al. Basic optimisation methods , 1985, Mathematical Gazette.
[3] L. Kirousis,et al. Approximating the unsatisfiability threshold of random formulas , 1998 .
[4] M. J. Box. A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..
[5] Michele Zito,et al. An Inproved Upper Bound on the Non-3-Colourability Threshold , 1998, Inf. Process. Lett..
[6] Colin McDiarmid,et al. Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .
[7] Yannis C. Stamatiou,et al. A Note on the Non-Colorability Threshold of a Random Graph , 2000, Electron. J. Comb..
[8] Yacine Boufkhad,et al. A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.
[9] Nico M. Temme,et al. Asymptotic estimates of Stirling numbers , 1993 .
[10] Michael Molloy,et al. Almost all graphs with 2.522 n edges are not 3-colorable , 1999, Electron. J. Comb..
[11] J. W. P. Hirschfeld,et al. Thresholds for colourability and satisfiability in random graphs and boolean formulae , 2001 .
[12] B. Bollobás. The evolution of random graphs , 1984 .
[13] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[14] Ehud Friedgut,et al. A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.
[15] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[16] Tad Hogg,et al. The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..
[17] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .