Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method

During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, semiconductors, metals and temperature sensitive substrates (like polyester) can be used since the deposition is carried out at or near to room temperature. As a low temperature process, it also avoids oxidation and corrosion of the substrate. The prime requisite for obtaining good quality thin film is the optimization of preparative provisos viz. concentration of the precursors, nature of complexing agent, pH of the precursor solutions and adsorption, reaction and rinsing time durations etc.In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, optical, electrical properties etc are described. Theoretical background necessary for the SILAR method is also discussed.

[1]  Partha Mitra,et al.  Chemical deposition of ZnO films for gas sensors , 1998 .

[2]  J. D. Desai,et al.  Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films , 2002 .

[3]  Y. Nicolau Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process , 1985 .

[4]  C. Lokhande,et al.  Studies on photoelectrochemical storage celis formed with CdS:Cu electrode , 1982 .

[5]  A. Jiménez-González Modification of ZnO Thin Films by Ni, Cu, and Cd Doping , 1997 .

[6]  S. Haram,et al.  Electroless deposition of orthorhombic copper(I) selenide and its room temperature phase transformation to cubic structure , 1994 .

[7]  I. Indutnyi,et al.  Photodoping in the As2S3Ag Thin‐Film Structure , 1991 .

[8]  M. Ristov,et al.  Chemical deposition of ZnO films , 1987 .

[9]  Rene Asomoza,et al.  Growth of textured ZnO:In thin films by chemical spray deposition , 1993 .

[10]  M. Leskelä,et al.  Growth of zinc sulfide thin films by the successive ionic layer adsorption and reaction (Silar) method on polyester substrates , 1997 .

[11]  M. Ristov,et al.  Chemically deposited Cu2O thin film as an oxygen pressure sensor , 1988 .

[12]  B. K. Gupta,et al.  High absorptivity AlPbS selective surfaces for solar photothermal conversion , 1979 .

[13]  C. Lokhande,et al.  Preparation and characterization of As2S3 thin films deposited using successive ionic layer adsorption and reaction (SILAR) method , 2000 .

[14]  I. Bratu,et al.  Spray pyrolysis deposition of CuS thin films , 1997 .

[15]  J. Meakin,et al.  The design and fabrication of high efficiency thin film CdS/Cu2S solar cells , 1979 .

[16]  C. Lokhande Chemical deposition of metal chalcogenide thin films , 1991 .

[17]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[18]  S. Haram,et al.  Chemical bath deposition of cubic copper (I) selenide and its room temperature transformation to the orthorhombic phase , 1997 .

[19]  Keiji Tanaka,et al.  Composition dependence of photo-induced refractive index changes in amorphous AsS films☆ , 1979 .

[20]  W. Palz,et al.  Photovoltaic solar energy conference , 1981 .

[21]  C. Lokhande,et al.  Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method , 2003 .

[22]  C. Lokhande,et al.  Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method , 2001 .

[23]  P. Pramanik,et al.  Deposition of nickel chalcogenide thin films by solution growth techniques , 1986 .

[24]  U. Tapper,et al.  Thin multilayer CdS/ZnS films grown by SILAR technique , 1997 .

[25]  D. Lincot,et al.  Chemical Bath Deposition of Cadmium Sulfide Thin Films. In Situ Growth and Structural Studies by Combined Quartz Crystal Microbalance and Electrochemical Impedance Techniques , 1992 .

[26]  M. Leskelä,et al.  Lateral force microscopy and force modulation microscopy on SILAR-grown lead sulfide samples , 1997 .

[27]  C. Lokhande,et al.  Photoelectrochemical characterization of chemically deposited (CdS)X(Bi2S3)1−X composite thin films , 2001 .

[28]  V. Tolstoy,et al.  The synthesis of Mn(IV) oxide nanolayers by the successive ionic layer deposition method , 1997 .

[29]  G. K. Padam The properties of chemically deposited Cu2−xSe thin films , 1987 .

[30]  C. Lokhande,et al.  Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (∼10 cm2) tin disulfide (SnS2) thin films , 2000 .

[31]  V. Tolstoy,et al.  C—The synthesis of CeO2+n·n H2O nanolayers on silicon and fused-quartz surfaces by the successive ionic layer deposition technique , 1997 .

[32]  J. M. Stewart,et al.  Polycrystalline thin‐film Cu2−xSe/CdS solar cell , 1985 .

[33]  D. Cahen,et al.  Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes , 1976, Nature.

[34]  M. Leskelä,et al.  Growth and Characterization of Zinc Sulfide Thin Films Deposited by the Successive Ionic Layer Adsorption and Reaction (Silar) Method Using Complexed Zinc Ions As the Cation Precursor , 1998 .

[35]  C. A. Estrada,et al.  Chemical Bath Deposition of ZnSe and CuSe Thin Films Using N,N‐Dimethylselenourea , 1994 .

[36]  K. Tanaka Reversible photoinduced change in intermolecular distance in amorphous As2S3 network , 1975 .

[37]  C. Lokhande,et al.  Preparation of Znx(O,S)y thin films using modified chemical bath deposition method , 2002 .

[38]  T. Matsumae,et al.  Electrical properties of Cu2−xSe thin films and their application for solar cells , 1980 .

[39]  V. Dutta,et al.  Solution grown PbS/CdS multilayer stacks as selective absorbers , 1981 .

[40]  L. C. Olsen,et al.  Experimental and theoretical studies of Cu2O solar cells , 1982 .

[41]  R. H. Tredgold,et al.  Electrical and photoconductive properties of SnS2 crystals , 1971 .

[42]  Partha Mitra,et al.  Chemically deposited zinc oxide thin film gas sensor , 1999 .

[43]  M. Ristov,et al.  Chemical deposition of Cu2O thin films , 1985 .

[44]  A. Mondal,et al.  A solution growth technique for the preparation of copper(II) selenide thin films , 1983 .

[45]  Metodija Najdoski,et al.  Optical and Electrical Properties of Copper Sulfide Films of Variable Composition , 1995 .

[46]  Partha Mitra,et al.  ZnO thin film sensor , 1998 .

[47]  P. Pramanik,et al.  Solution growth technique for the deposition of cobalt sulphide thin film , 1986 .

[48]  H. Schock,et al.  Scaling-up of CIS technology for thin-film solar modules , 1996 .

[49]  Joonhee Kang,et al.  Vapor-deposited superconducting lanthanum sulfide films , 1988 .

[50]  P. K. Nair,et al.  Co-deposition of PbS-CuS thin films by chemical bath technique , 1996 .

[51]  C. Lokhande,et al.  Preparation and characterization of Sb2S3 thin films using a successive ionic layer adsorption and reaction (SILAR) method , 1999 .

[52]  C. Lokhande,et al.  Photoelectrochemical investigation of Ag2S thin films deposited by SILAR method , 2001 .

[53]  C. Julien,et al.  Optical and transport measurements on lithium intercalated α-In2Se3 layered compounds , 1981 .

[54]  M. A. Korzhuev Dufour effect in superionic copper selenide , 1998 .

[55]  M. Leskelä,et al.  Structural and topographical studies of SILAR-grown highly oriented PbS thin films , 2000 .

[56]  T. Moss,et al.  Lead Salt Photoconductors , 1955, Proceedings of the IRE.

[57]  Y. Nicolau,et al.  Solution growth of ZnS, CdS and Zn1-xCdxS thin films by the successive ionic-layer adsorption and reaction process; growth mechanism , 1988 .

[58]  A. Ennaoui,et al.  Chemical bath ZnSe thin films: deposition and characterisation , 1998 .

[59]  M. Leskelä,et al.  Deposition of manganese-doped zinc sulfide thin films by the successive ionic layer adsorption and reaction (SILAR) method , 1995 .

[60]  M. Leskelä,et al.  Growth of CuS thin films by the successive ionic layer adsorption and reaction method , 2000 .

[61]  C. Lokhande,et al.  Some structural studies on successive ionic layer adsorption and reaction (SILAR)-deposited CdS thin films , 2001 .

[62]  A. Tonejc X-ray diffraction study on a ? phase transition of Cu2Se , 1981 .

[63]  Toshio Yamada,et al.  Diffusion of Metals in Arsenic Trisulfide Glass Films , 1971 .

[64]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[65]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[66]  A. Mondal,et al.  Effect of bath parameters on chemically deposited thin films of CuSe , 1984 .

[67]  M. Leskelä,et al.  Growth of ZnS, CdS and multilayer ZnS/CdS thin films by SILAR technique , 1997 .

[68]  M. Dupuy,et al.  ZnS , CdS , and Zn1 − x Cd x S Thin Films Deposited by the Successive Ionic Layer Adsorption and Reaction Process , 1990 .

[69]  B. Rai,et al.  Cu2O solar cells: A review , 1988 .

[70]  C. H. Bhosale,et al.  Structural and optical properties of electrodeposited Bi2S3, Sb2S3 and As2S3 thin films , 1995 .

[71]  C. Lokhande,et al.  Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method , 2000 .

[72]  J. D. Desai,et al.  Alkaline bath chemical deposition of antimony (III) sulphide thin films , 1994 .

[73]  A. Jiménez-González,et al.  Effect of heat treatment on the properties of ZnO thin films prepared by successive ion layer adsorption and reaction (SILAR) , 1996 .

[74]  A. Ennaoui,et al.  Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films , 1998 .

[75]  J. C. Slater Barrier Theory of the Photoconductivity of Lead Sulfide , 1956 .

[76]  M. Leskelä,et al.  Growth of zinc peroxide (ZnO2) and zinc oxide (ZnO) thin films by the successive ionic layer adsorption and reaction – SILAR – technique , 2000 .

[77]  C. Lokhande,et al.  Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films , 2003 .

[78]  C. Lokhande,et al.  A new chemical method for the preparation of Ag2S thin films , 2000 .

[79]  C. Lokhande,et al.  Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method , 2001 .

[80]  C. Lokhande,et al.  Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method , 2000 .

[81]  P. Lee,et al.  Electrical conduction mechanisms in tin disulphide , 1973 .

[82]  P. K. Nair,et al.  Photosensitive ZnO thin films prepared by the chemical deposition method SILAR , 1995 .

[83]  C. Lokhande,et al.  Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method , 2000 .

[84]  N. Sato,et al.  New optical recording material for video disc system , 1983 .

[85]  S. Haram,et al.  Electroless deposition on copper substrates and characterization of thin films of copper (I) selenide , 1992 .

[86]  L. Peter The photoelectrochemical properties of anodic Bi2S3 films , 1979 .

[87]  P. K. Nair,et al.  Chemically deposited copper oxide thin films: structural, optical and electrical characteristics , 1999 .

[88]  S. Kashida,et al.  X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu2Se , 1988 .