Pixelated Semantic Colorization

While many image colorization algorithms have recently shown the capability of producing plausible color versions from gray-scale photographs, they still suffer from limited semantic understanding. To address this shortcoming, we propose to exploit pixelated object semantics to guide image colorization. The rationale is that human beings perceive and distinguish colors based on the semantic categories of objects. Starting from an autoregressive model, we generate image color distributions, from which diverse colored results are sampled. We propose two ways to incorporate object semantics into the colorization model: through a pixelated semantic embedding and a pixelated semantic generator. Specifically, the proposed network includes two branches. One branch learns what the object is, while the other branch learns the object colors. The network jointly optimizes a color embedding loss, a semantic segmentation loss and a color generation loss, in an end-to-end fashion. Experiments on Pascal VOC2012 and COCO-stuff reveal that our network, when trained with semantic segmentation labels, produces more realistic and finer results compared to the colorization state-of-the-art.

[1]  Xavier Binefa,et al.  Improving visual recognition using color normalization in digital video applications , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[2]  David A. Forsyth,et al.  Learning Large-Scale Automatic Image Colorization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[5]  Fisher Yu,et al.  Scribbler: Controlling Deep Image Synthesis with Sketch and Color , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Christoph H. Lampert,et al.  Probabilistic Image Colorization , 2017, BMVC.

[7]  M. A. Bouman,et al.  Spatiotemporal chromaticity discrimination. , 1969, Journal of the Optical Society of America.

[8]  Bernhard Schölkopf,et al.  Automatic Image Colorization Via Multimodal Predictions , 2008, ECCV.

[9]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[10]  AshikhminMichael,et al.  Transferring color to greyscale images , 2002 .

[11]  Klaus Mueller,et al.  Transferring color to greyscale images , 2002, ACM Trans. Graph..

[12]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[13]  Lou,et al.  UvA-DARE (Digital Academic Repository) Color Constancy by Deep Learning Color Constancy by Deep Learning , 2015 .

[14]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[15]  Aditya Deshpande,et al.  Learning Diverse Image Colorization , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[17]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[18]  Fahad Shahbaz Khan,et al.  Top-down color attention for object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Vittorio Ferrari,et al.  COCO-Stuff: Thing and Stuff Classes in Context , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Tien-Tsin Wong,et al.  Manga colorization , 2006, SIGGRAPH 2006.

[21]  Dani Lischinski,et al.  Colorization by example , 2005, EGSR '05.

[22]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[23]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Yi Li,et al.  R-FCN: Object Detection via Region-based Fully Convolutional Networks , 2016, NIPS.

[25]  Bin Sheng,et al.  Deep Colorization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[26]  Aaron C. Courville,et al.  FiLM: Visual Reasoning with a General Conditioning Layer , 2017, AAAI.

[27]  Ling Shao,et al.  Pixel-level Semantics Guided Image Colorization , 2018, BMVC.

[28]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[29]  Alexei A. Efros,et al.  Real-time user-guided image colorization with learned deep priors , 2017, ACM Trans. Graph..

[30]  Sergio Guadarrama,et al.  Tracking Emerges by Colorizing Videos , 2018, ECCV.

[31]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[32]  Guillermo Sapiro,et al.  Fast image and video colorization using chrominance blending , 2006, IEEE Transactions on Image Processing.

[33]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Mohammad Norouzi,et al.  PixColor: Pixel Recursive Colorization , 2017, BMVC.

[35]  Gregory Shakhnarovich,et al.  Learning Representations for Automatic Colorization , 2016, ECCV.

[36]  Deepu Rajan,et al.  Image colorization using similar images , 2012, ACM Multimedia.

[37]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Yong Yu,et al.  Unsupervised Diverse Colorization via Generative Adversarial Networks , 2017, ECML/PKDD.

[39]  Chao Dong,et al.  Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Kevin Frans,et al.  Outline Colorization through Tandem Adversarial Networks , 2017, ArXiv.

[41]  Aurélie Bugeau,et al.  Variational Exemplar-Based Image Colorization , 2014, IEEE Transactions on Image Processing.

[42]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[43]  Stephen Lin,et al.  Intrinsic colorization , 2008, SIGGRAPH 2008.

[44]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[45]  Chi-Keung Tang,et al.  Local color transfer via probabilistic segmentation by expectation-maximization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Harry Shum,et al.  Natural Image Colorization , 2007, Rendering Techniques.

[47]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Dongdong Chen,et al.  Deep exemplar-based colorization , 2018, ACM Trans. Graph..

[49]  Stephen Lin,et al.  Semantic colorization with internet images , 2011, ACM Trans. Graph..

[50]  Hiroshi Ishikawa,et al.  Let there be color! , 2016, ACM Trans. Graph..

[51]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[52]  한보형,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015 .

[53]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[56]  Jun-Cheng Chen,et al.  An adaptive edge detection based colorization algorithm and its applications , 2005, ACM Multimedia.

[57]  Peter Hall,et al.  Woven Fabric Model Creation from a Single Image , 2017, ACM Trans. Graph..

[58]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.