Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence

Abstract Several Neogene basins in the Eastern Betics contain a record of thick upper Miocene evaporites. The inner basins—those located distal to the Mediterranean coast—include evaporite units ranging from the late Tortonian to the early Messinian, whereas the marginal basins—those located in the vicinity of the Mediterranean coast—include evaporite units corresponding to the late Messinian that are linked to the “salinity crisis”. The sedimentological and geochemical comparison of the evaporites in the inner and marginal basins enable us to show their differences in the modes of deposition under local, structural controls and differentiated palaeogeography. In the inner basins of the Murcia–Alicante region, a number of evaporite units have been differentiated whose gypsum lithofacies have: (1) variable strontium contents, with mean values (primary gypsum) between 1121 and 2380 ppm; (2) isotopic compositions of sulphur ( δ 34 S) ranging from those characteristic of the Tertiary marine water (+20.3 to +25.5‰) to those characteristic of the Triassic sulphates (+8.0 to +16.0‰), the latter suggesting recycling of the sulphate anion in meteoric waters; intermediate values (+17.4 to +19.6‰) are attributed to mixed mother brines; and (3) strontium ratios ( 87 Sr/ 86 Sr) comprised between 0.70804 and 0.70888; these values range from those of the Tertiary marine water to those exceeding the Triassic sulphates, suggesting additional continental contributions (from country rocks and hydrothermal solutions). The comparison between the sulphur and strontium isotopic compositions of the sulphates, together with the study of the biota present in the marls associated with the gypsum, allows us to distinguish between marine, continental, and mixed units. In the marginal basins of the Eastern Betics, where single evaporite units characterized by selenitic gypsum prevail: (1) the strontium contents are more homogeneous, with mean values (primary gypsum) between 493 and 625 ppm; (2) the isotopic compositions of oxygen ( δ 18 O) and sulphur ( δ 34 S) are comprised between +12.2 and +14.8‰, and between +22.0 and +23.5‰, respectively; and (3) the strontium ratios ( 87 Sr/ 86 Sr) vary from 0.70890 to 0.70895. All these isotopic values reveal a marine origin and the lack of contribution of significant continental water during the late Messinian evaporite deposition in the Betic Strait. These characteristics are similar to those of the Lower Evaporite.

[1]  F. Ortí,et al.  Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain) , 2000 .

[2]  A. Fortuin,et al.  Late highstand patterns of shifting and stepping coastal barriers and washover-fans (late Messinian, Sorbas Basin, SE Spain) , 1998 .

[3]  E. Pous Les evaporites de les conques betiques marginals (fortuna-lorca, mioce superior): comparacio amb altres conques mediterranies , 1998 .

[4]  P. Lukowski Évolution tectonosédimentaire du bassin néogène de Fortuna, Cordillères bétiques orientales (Espagne) , 1987 .

[5]  M. Garcin Le bassin de San Miguel de Salinas (Alicante, Espagne) : relations entre contexte structuro-sédimentaire et dépôts évaporitiques et carbonates au Messinien , 1987 .

[6]  C. Taberner,et al.  Shallow marine and continental conglomerates derived from coral reef complexes after desiccation of a deep marine basin: the Tortonian-Messinian deposits of the Fortuna Basin, SE Spain , 1983, Journal of the Geological Society.

[7]  D. W. Müller Die Salinitätskrise im Messinian (spätes Miozän) der Becken von Fortuna und Sorbas (Südost Spanien) , 1986 .

[8]  B. Robinson,et al.  Quantitative preparation of sulfur dioxide, for sulfur-34/sulfur-32 analyses, from sulfides by combustion with cuprous oxide , 1975 .

[9]  W. Krijgsman Miocene magnetostratigraphy and cyclostratigraphy in the Mediterranean : extension of the astronomical polarity time scale , 1996 .

[10]  J. Turell,et al.  Datación magnetoestratigráfica de las evaporitas de la cuenca neógena de Fortuna (Murcia) , 1998 .

[11]  J. Warren The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia , 1982 .

[12]  R. Riding,et al.  Late Miocene Mediterranean desiccation: topography and significance of the 'Salinity Crisis' erosion surface on-land in southeast Spain: Reply , 1999 .

[13]  B. Charlotte Schreiber,et al.  Relationship of Organic Geochemistry to Sedimentation Under Highly Variable Environments, Lorca Basin, Spain: Preliminary Results , 1994 .

[14]  D. Wilson,et al.  Chronology, causes and progression of the Messinian salinity crisis , 1999, Nature.

[15]  Rosa Utrilla Casal Les composicions isotòpiques ([alfa]18 O, [alfa]34 S) del sulfat, com a indicadors de l'origen de les evaporites del mesozoic i del cenozoic de la Península Ibèrica i les Illes Balears , 1990 .

[16]  C. Ayora,et al.  X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins , 1994 .

[17]  J. A. Vera,et al.  Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain , 1992 .

[18]  F. Mondéjar La evolución espacio- temporal de la cuenca de Lorca (Murcia). Aspectos geológicos y mineralógicos , 1994 .

[19]  M. Labrador,et al.  Nuevos datos sobre la bioestratigrafía del Neógeno continental de Murcia , 1983 .

[20]  Kenneth J. Hsü,et al.  Event stratigraphy and paleoceanography in the Fortuna Basin (southeast Spain): A scenario for the Messinian salinity crisis , 1987 .

[21]  C. Montenat,et al.  Originalité géodynamique des bassins néogènes du domaine bétique oriental (Espagne) , 1987 .

[22]  H. Craig,et al.  Oxygen-18 Variations in Sulfate Ions in Sea Water and Saline Lakes , 1967, Science.

[23]  G. Clauzon,et al.  Age et durèe de la crise de salinitè messinienne , 1994 .

[24]  F. Cabo,et al.  Geoquímica del estroncio en los yesos messinienses de la cuenca de San Miguel de Salinas (Alicante) , 1993 .

[25]  C. Spot A strontium and sulfur isotopic study of Permo-Triassic evaporites in the Northern Calcareous Alps, Austria , 1996 .

[26]  R. Harmon,et al.  Guanidine hydrochloride method for determination of water oxygen isotope ratios and the oxygen-18 fractionation between carbon dioxide and water at 25.degree.C , 1985 .

[27]  B. Schreiber,et al.  Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin , 1976 .

[28]  D. Müller,et al.  Origin and age of the Mediterranean Messinian evaporites : implications from Sr isotopes , 1991 .

[29]  D. Müller,et al.  Abu Dhabi sabkha, Persian Gulf, revisited: Application of strontium isotopes to test an early dolomitization model , 1990 .

[30]  J. Kushnir The composition and origin of brines during the Messinian desiccation event in the Meditterranean Basin as deduced from concentrations of ions coprecipitated with gypsum and anhydrite , 1982 .

[31]  R. Fort,et al.  Estudio geoquímico de los yesos miocenos de la zona este de la cuenca de Madrid , 1986 .

[32]  J. M. Salvany,et al.  Nonmarine Evaporitic Sedimentation and Associated Diagenetic Processes of the Southwestern Margin of the Ebro Basin (Lower Miocene), Spain , 1994 .

[33]  F. Mondéjar,et al.  Nuevos afloramientos de celestina en Molina de Segura (Murcia) , 1995 .

[34]  J. Pueyo,et al.  Composición Isotópica De Las Evaporitas Terciarias Continentales De La Cuenca Del Ebro: Relación Con Los Ambientes Deposicionales , 1991 .

[35]  J. Pueyo,et al.  Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain , 1992 .

[36]  R. E. Denison,et al.  Variation of seawater 87Sr/86Sr throughout Phanerozoic time , 1982 .

[37]  C. Sevilla,et al.  Evolución geoquímica de cuencas evaporíticas terciarias: implicaciones en la composición isotópica disuelto en el océano durante el terciario , 1999 .

[38]  Carlos Ayora,et al.  The Messinian salt of the Mediterranean; geochemical study of the salt from the central Sicily Basin and comparison with the Lorca Basin, Spain , 1995 .

[39]  R. Riding,et al.  Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain , 1998 .

[40]  J. Rouse,et al.  Major evaporite deposition from groundwater remobilized salts , 1980, Nature.

[41]  Gregory J. Wolff,et al.  Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca basin (SE Spain) , 1998 .

[42]  R. Huene,et al.  Initial reports of the deep sea drilling project: National Science Foundation, Washington, D.C., 1969, 672 pp., U.S. $ 10.25 , 1971 .

[43]  J. Rouchy,et al.  Correlación litoestratigráfica de las evaporitas messinienses en las cuencas de Lorca y Fortuna (Murcia) , 1993 .

[44]  W. Ryan,et al.  Late Miocene Desiccation of the Mediterranean , 1973, Nature.

[45]  W. Krijgsman,et al.  Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics , 1998 .

[46]  D. Michalzik Lithofacies, diagenetic spectra and sedimentary cycles of messinian (Late Miocene) evaporites in SE Spain , 1996 .

[47]  Jean-Marie Rouchy,et al.  Late Miocene events in the Mediterranean as recorded by carbonate-evaporice relations , 1992 .

[48]  L. Londeix,et al.  Paleobiological evidence of depositional conditions in the Salt Member, Gessoso-Solfifera Formation (Messinian, upper Miocene) of Sicily , 1998 .

[49]  F. Mondéjar,et al.  Tectónica y sedimentación neógena en la Cuenca de Lorca (Murcia) , 1992 .

[50]  T. Peryt,et al.  Strontium geochemistry of Miocene primary gypsum; Messinian of southeastern Spain and Sicily and Badenian of Poland , 1998 .

[51]  R. E. Denison,et al.  Using Strontium Isotopes to Determine the Age and Origin of Gypsum and Anhydrite Beds , 1998, The Journal of Geology.

[52]  L. Lonergan,et al.  Proximal deposits at a fault-controlled basin margin, Upper Miocene, SE Spain , 1993, Journal of the Geological Society.

[53]  J. Bryant,et al.  Influence of freshwater flux on 87Sr/86Sr chronostratigraphy in marginal marine environments and dating of vertebrate and invertebrate faunas , 1995, Journal of Paleontology.

[54]  F. Wrobel,et al.  Facies successions in the pre-evaporitic Late Miocene of the Lorca Basin, SE Spain , 1999 .

[55]  R. Butler,et al.  Tectonics and sequence stratigraphy in Messinian basins, Sicily: Constraints on the initiation and termination of the Mediterranean salinity crisis , 1995 .

[56]  R. Butler,et al.  The Mediterranean water body in the late Messinian: interpreting the record from marginal basins on Sicily , 1999, Journal of the Geological Society.

[57]  J. P. Rodríguez-Aranda,et al.  Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions , 1998 .

[58]  Palaeomagnetic chronology of the evaporitic sedimentation in the Neogene Fortuna Basin (SE Spain): early restriction preceding the `Messinian Salinity Crisis' , 1999 .

[59]  F. Cabo,et al.  Composición isotópica de los yesos Messinienses de la cuenca de Fortuna (Murcia):: implicaciones sedimentológicas. , 1995 .

[60]  R. Butler,et al.  Calibrating the duration and timing of the Messinian salinity crisis in the Mediterranean: linked tectonoclimatic signals in thrust-top basins of Sicily , 1999, Journal of the Geological Society.

[61]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[62]  Francisco Garcia Veigas Geoquimica de inclusiones fluidas en formaciones salinas, microanalisis cryo-sem-eds , 1993 .

[63]  A. Longinelli Isotope geochemistry of some Messinian evaporates: Paleoenvironmental implications , 1979 .

[64]  F. Cabo,et al.  Caracterización petrológica y geoquímica de la Unidad Salina messiniense de la cuenca de Lorca (sondeos S4 y S5). , 1993 .

[65]  D. Müller,et al.  Diatoms of the Fortuna Basin, southeast Spain: Evidence for the intra‐Messinian inundation , 1989 .

[66]  B. Charlotte Schreiber,et al.  Characterization of Organic Matter from a Restricted/Evaporative Sedimentary Environment: Late Miocene of Lorca Basin, Southeastern Spain , 1995 .

[67]  J. Duran Las formaciones evaporíticas del terciario continental de la cuenca del Ebro en Navarra y la Rioja: litoestratigrafía, petrología y sedimentología , 1991 .

[68]  F. Wezel,et al.  Late Miocene Evaporites of the Central Sicilian Basin, Italy , 1973 .

[69]  F. Cabo,et al.  Las evaporitas de la cuenca Neógena de Fortuna (Murcia): Aspectos diagenéticos y geoquímicos. , 1997 .

[70]  M. Loutre,et al.  Alternate interpretation of the Messinian salinity crisis: Controversy resolved? , 1996 .