The Cell Tracking Challenge: 10 years of objective benchmarking

[1]  J. Allebach,et al.  Training a universal instance segmentation network for live cell images of various cell types and imaging modalities , 2022, ArXiv.

[2]  R. Mikut,et al.  EmbedTrack—Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths , 2022, IEEE Access.

[3]  Assaf Arbelle,et al.  Dual-Task ConvLSTM-UNet for Instance Segmentation of Weakly Annotated Microscopy Videos , 2022, IEEE Transactions on Medical Imaging.

[4]  Tammy Riklin-Raviv,et al.  Graph Neural Network for Cell Tracking in Microscopy Videos , 2022, ECCV.

[5]  Tobias Pietzsch,et al.  Labkit: Labeling and Segmentation Toolkit for Big Image Data , 2021, bioRxiv.

[6]  Noor M. Al-Shakarji,et al.  DMNet: Dual-Stream Marker Guided Deep Network for Dense Cell Segmentation and Lineage Tracking , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[7]  K. Rogers,et al.  Spatial omics and multiplexed imaging to explore cancer biology , 2021, Nature Methods.

[8]  Philipp J. Keller,et al.  Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations , 2021, bioRxiv.

[9]  R. Yuste,et al.  Ensemble synchronization in the reassembly of Hydra’s nervous system , 2021, Current Biology.

[10]  Bjoern H Menze,et al.  The Medical Segmentation Decathlon , 2021, Nature Communications.

[11]  J. D’hooge,et al.  Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking , 2021, Scientific Reports.

[12]  R. Mikut,et al.  A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction , 2021, bioRxiv.

[13]  M. Averof,et al.  Tracking cell lineages in 3D by incremental deep learning , 2021, bioRxiv.

[14]  Guna Seetharaman,et al.  Motion U-Net: Multi-cue Encoder-Decoder Network for Motion Segmentation , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[15]  Jens Petersen,et al.  nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.

[16]  E. Meijering A bird’s-eye view of deep learning in bioimage analysis , 2020, Computational and structural biotechnology journal.

[17]  Ralf Mikut,et al.  Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy , 2020, PloS one.

[18]  Ing Ren Tsang,et al.  J Regularization Improves Imbalanced Multiclass Segmentation , 2019, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).

[19]  Ing Ren Tsang,et al.  A Weakly Supervised Method for Instance Segmentation of Biological Cells , 2019, DART/MIL3ID@MICCAI.

[20]  Yang Zhao,et al.  Deep High-Resolution Representation Learning for Visual Recognition , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Luc Van Gool,et al.  Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Petr Matula,et al.  DIC Image Segmentation of Dense Cell Populations by Combining Deep Learning and Watershed , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[23]  M. Sauer,et al.  Super-resolution microscopy demystified , 2019, Nature Cell Biology.

[24]  M. Götz,et al.  Cell tracking in vitro reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord , 2018, Biology Open.

[25]  David Svoboda,et al.  FiloGen: A Model-Based Generator of Synthetic 3-D Time-Lapse Sequences of Single Motile Cells With Growing and Branching Filopodia , 2018, IEEE Transactions on Medical Imaging.

[26]  John M. Girkin,et al.  The light-sheet microscopy revolution , 2018 .

[27]  Ing Ren Tsang,et al.  Multiclass Weighted Loss for Instance Segmentation of Cluttered Cells , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[28]  Nathalie Harder,et al.  An Objective Comparison of Cell Tracking Algorithms , 2017, Nature Methods.

[29]  M. Maška,et al.  Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs , 2015, PloS one.

[30]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[31]  Joakim Jalden,et al.  Global Linking of Cell Tracks Using the Viterbi Algorithm , 2015, IEEE Transactions on Medical Imaging.

[32]  Nathalie Harder,et al.  A benchmark for comparison of cell tracking algorithms , 2014, Bioinform..

[33]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Jens Rittscher,et al.  Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis , 2011, Medical Image Anal..

[35]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[36]  Eduardo Romera,et al.  ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation , 2018, IEEE Transactions on Intelligent Transportation Systems.

[37]  David Svoboda,et al.  MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy , 2017, IEEE Transactions on Medical Imaging.