Auxiliary cooling: comparison of air-cooled vs. water-cooled vests in hot-dry and hot-wet environments.

Water-cooled, air-cooled, and ambient air-ventilated auxiliary cooling vests were evaluated in a hot-wet climate (HW) (35 degrees C, 75% R.H.) and a hot-dry environment (HD) with additional infrared radiation (Ta = 49 degrees C, 20% R.H., 68 degrees C black globe temperature). Twelve subjects dressed in full chemical warfare combat uniforms underwent 120 min of heat exposure in each combination of climate and cooling vest, except for the hot-dry environment and ambient-air vest. During each exposure, total exercise time was 20 min and rest time 100 min. This resulted in a mean time weighted metabolic rate of 180 W. Both water-cooled and air-cooled vests were sufficient for cooling in the HW climate: heat storage (delta S) was 13 and 7 W, final rectal temperature (Tre) 37.4 and 37.3 degrees C, and heart rate (HR) 124 and 112 b . min-1, respectively. While using the ambient-air vest, all variables were significantly (p less than 0.05) higher (delta S, 25 W; Tre, 37.7 degrees C; HR, 139 b . min-1; respectively). In the HD climate, both water and air-cooled vests were insufficient with a delta S of 46 and 48 W, final Tre of 38.4 and 38.3 degrees C, and final HR of 151 and 147 b . min-1. However, both cooling vests improved the subjects' physiological status compared to these predicted variables without auxiliary cooling. No significant differences were found between the air or the water-cooled vests in either the HD or HW climates. It was concluded that an air-cooled vest can be used with the same efficiency as a water-cooled vest. In contrast, the ambient-air vest was shown to have a low effectiveness in HW and to be dangerous in a HD climate.