On the Real τ-Conjecture and the Distribution of Complex Roots
暂无分享,去创建一个
[1] Jean-Jacques Risler,et al. Additive Complexity and Zeros of Real Polynomials , 1985, SIAM J. Comput..
[2] Pascal Koiran,et al. Shallow circuits with high-powered inputs , 2010, ICS.
[3] S. Smale. Mathematical problems for the next century , 1998 .
[4] M. Shub,et al. On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .
[5] A. Kempner. On the complex roots of algebraic equations , 1935 .
[6] Paul Erdös,et al. On the Distribution of Roots of Polynomials , 1950 .
[7] Peter Bürgisser. On Defining Integers And Proving Arithmetic Circuit Lower Bounds , 2009, computational complexity.
[8] Edward D. Kim,et al. Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .
[9] Q. I. Rahman,et al. Analytic theory of polynomials , 2002 .
[10] W. Hayman,et al. Angular Value Distribution of Power Series with Gaps , 1972 .
[11] Pascal Koiran,et al. A Wronskian approach to the real τ-conjecture , 2012, J. Symb. Comput..