Identification of linear relationships from noisy data using errors-in-variables models—relevance for reconstruction of past climate from tree-ring and other proxy information

Reliable paleoclimate reconstructions are needed to assess if the recent climatic changes are unusual compared to pre-industrial climate variability. Here, we focus on one important problem in climate reconstructions: Transfer functions relating proxies (predictors) and target climatic quantities (predictands) can be seriously biased when predictand and predictor noise is not adequately accounted for, resulting in biased amplitudes of reconstructed climatic time series. We argue for errors-in-variables models (EVM) for unbiased identification of linear structural relationships between noisy proxies and target climatic quantities by (1) introducing underlying statistical concepts and (2) demonstrating the potential biases of using the EVM approach, the most commonly used direct ordinary least squares (OLS) regression, inverse OLS regression, or the reduced major axis method (‘variance matching’) with a simulation example of artificial noise-disturbed sinusoidal time series. We then develop an alternative strategy for paleoclimate reconstruction from tree-ring and other proxy data, explicitly accounting for the identified problem.

[1]  Ross McKitrick,et al.  Reply to comment by Huybers on “Hockey sticks, principal components, and spurious significance” , 2005 .

[2]  Harold C. Fritts,et al.  Methods of Calibration, Verification, and Reconstruction , 1990 .

[3]  Brian H. McArdle,et al.  Lines, models, and errors: Regression in the field , 2003 .

[4]  Sucharita Ghosh,et al.  A changing world: Challenges for landscape research , 2007 .

[5]  Bo Christiansen,et al.  A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness , 2009 .

[6]  M. Kendall,et al.  Regression, structure and functional relationship. Part I. , 1951, Biometrika.

[7]  Gerd Bürger,et al.  Climate reconstruction by regression – 32 variations on a theme , 2006 .

[8]  B. McArdle The structural relationship: regression in biology , 1988 .

[9]  Keith R. Briffa,et al.  Estimating Sampling Errors in Large-Scale Temperature Averages , 1997 .

[10]  Eugene R. Wahl,et al.  Reply to comment by Jason E. Smerdon et al. on “Robustness of proxy‐based climate field reconstruction methods” , 2008 .

[11]  Tianyi Zhang,et al.  Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science , 2007 .

[12]  Ross McKitrick,et al.  Corrections to the Mann et. al. (1998) Proxy Data Base and Northern Hemispheric Average Temperature Series , 2003 .

[13]  Anders Moberg,et al.  Millennial temperature reconstruction intercomparison and evaluation , 2006 .

[14]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[15]  A. Madansky The fitting of straight lines when both variables are subject to error , 1959 .

[16]  E. Cook,et al.  Methods of Dendrochronology - Applications in the Environmental Sciences , 1991 .

[17]  Gerd Bürger,et al.  Are multiproxy climate reconstructions robust? , 2005 .

[18]  Ross McKitrick,et al.  Hockey sticks, principal components, and spurious significance , 2005 .

[19]  D. Frank,et al.  On Selected Issues and Challenges in Dendroclimatology , 2007 .

[20]  M. Mann,et al.  Climate Over the Past Two Millennia , 2007 .

[21]  Eduardo Zorita,et al.  Comment on “Robustness of proxy‐based climate field reconstruction methods” by Michael E. Mann et al. , 2008 .

[22]  R. L. Brown BIVARIATE STRUCTURAL RELATION , 1957 .

[23]  K. Holmgren,et al.  Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005, Nature.

[24]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[25]  Eduardo Zorita,et al.  Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation , 2009 .

[26]  M. Genton,et al.  Technical Note: Correcting for signal attenuation from noise: sharpening the focus on past climate , 2009 .

[27]  Craig Loehle,et al.  Estimating Climatic Timeseries From Multi-Site Data Afflicted With Dating Error , 2005 .

[28]  J. Hartung,et al.  Statistik: Lehr- und Handbuch der angewandten Statistik , 2009 .

[29]  James Durbin,et al.  Errors in variables , 1954 .

[30]  E. Laws,et al.  Appropriate use of regression analysis in marine biology , 1981 .

[31]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[32]  Malcolm K. Hughes,et al.  Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain , 2005 .

[33]  S. Thompson,et al.  Correcting for regression dilution bias: comparison of methods for a single predictor variable , 2000 .

[34]  E. Cook,et al.  Tests of the RCS Method for Preserving Low-Frequency Variability in Long Tree-Ring Chronologies , 2003 .

[35]  Gerald R. North,et al.  Surface Temperature Reconstructions for the Last 1000 Years , 2006 .

[36]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[37]  W. Broecker,et al.  Was the Medieval Warm Period Global? , 2001, Science.

[38]  J. Hartung,et al.  Lehr- und Handbuch der angewandten Statistik , 2005 .

[39]  Keith R. Briffa,et al.  The Real Color of Climate Change? , 2004, Science.

[40]  Hans von Storch,et al.  Comments on “Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate” , 2007 .

[41]  J. Raaijmakers,et al.  Measurement error and ANCOVA: Functional and structural relationship approaches , 1987 .

[42]  D. Frank,et al.  Climate reconstructions: Low-frequency ambition and high-frequency ratification , 2004 .

[43]  D.Sc. Joseph Berkson Are there Two Regressions , 1950 .

[44]  David Frank,et al.  Effect of scaling and regression on reconstructed temperature amplitude for the past millennium , 2005 .

[45]  Eugene R. Wahl,et al.  Reply to Comments on testing the fidelity of methods used in proxy-based reconstructions of past climates: The role of standardization interval , 2007 .

[46]  R. J. Adcock A Problem in Least Squares , 1878 .

[47]  P. Jones,et al.  Low-frequency temperature variations from a northern tree ring density , 2001 .

[48]  Peter John Huybers,et al.  Comment on “Hockey sticks, principal components, and spurious significance” by S. McIntyre and R. McKitrick , 2005 .

[49]  H. M. Sachs,et al.  Paleoecological Transfer Functions , 1977 .

[50]  Edward R. Cook,et al.  Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability , 2002, Science.

[51]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[52]  G. Hegerl,et al.  Detection of Human Influence on a New, Validated 1500-Year Temperature Reconstruction , 2007 .

[53]  Thomas M. Melvin,et al.  A “signal-free” approach to dendroclimatic standardisation , 2008 .

[54]  Eduardo Zorita,et al.  Testing the Mann et al. (1998) Approach to Paleoclimate Reconstructions in the Context of a 1000-Yr Control Simulation with the ECHO-G Coupled Climate Model , 2003 .

[55]  C. Loehle A mathematical analysis of the divergence problem in dendroclimatology , 2009 .

[56]  Alexey Kaplan,et al.  Comments on “Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate”: The Role of the Standardization Interval* , 2007 .

[57]  Maurice G. Kendall,et al.  The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .

[58]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[59]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.

[60]  Edward R. Cook,et al.  The 'segment length curse' in long tree-ring chronology development for palaeoclimatic studies , 1995 .

[61]  Eduardo Zorita,et al.  Reconstructing Past Climate from Noisy Data , 2004, Science.

[62]  Francis W. Zwiers,et al.  Evaluation of proxy-based millennial reconstruction methods , 2008 .

[63]  Eugene R. Wahl,et al.  Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate , 2005 .

[64]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[65]  Ross McKitrick,et al.  The M&M Critique of the MBH98 Northern Hemisphere Climate Index: Update and Implications , 2005 .

[66]  E. Cook,et al.  Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years , 2004 .