Dissociation of methane under high pressure.

Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

[1]  Hui Wang,et al.  High-pressure crystal structures and superconductivity of Stannane (SnH4) , 2010, Proceedings of the National Academy of Sciences.

[2]  T. Yagi,et al.  Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets , 2009 .

[3]  H. Mao,et al.  X-ray diffraction studies and equation of state of methane at 202 GPa , 2009 .

[4]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[5]  Mario Valle,et al.  Transparent dense sodium , 2009, Nature.

[6]  Yanming Ma,et al.  Novel high pressure structures of polymeric nitrogen. , 2009, Physical review letters.

[7]  Yanming Ma,et al.  Absence of superconductivity in the high-pressure polymorph of MgB 2 , 2009 .

[8]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[9]  Yanming Ma,et al.  Superconducting high pressure phase of germane. , 2008, Physical review letters.

[10]  R. Ibberson,et al.  Solid-state structures of the covalent hydrides germane and stannane. , 2008, Acta crystallographica. Section B, Structural science.

[11]  S. Deemyad,et al.  Melting line of hydrogen at high pressures. , 2008, Physical review letters.

[12]  Yanming Ma,et al.  First-principles study of the lattice dynamics, thermodynamic properties and electron-phonon coupling of YB(6) , 2007 .

[13]  Raman studies on solid CH4 at room temperature to 208 GPa , 2007 .

[14]  Yanming Ma,et al.  Ab initio determination of crystal lattice constants and thermal expansion for germanium isotopes , 2007 .

[15]  Chris J. Pickard,et al.  Structure of phase III of solid hydrogen , 2007 .

[16]  A. Bergara,et al.  No evidence of metallic methane at high pressure , 2006 .

[17]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[18]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[19]  A. Zerr,et al.  Decomposition of alkanes at high pressures and temperatures , 2006 .

[20]  A. Oganov,et al.  High-pressure phases of CaCO3: Crystal structure prediction and experiment , 2006 .

[21]  N. Ashcroft Hydrogen dominant metallic alloys: high temperature superconductors? , 2004, Physical review letters.

[22]  R. Ibberson,et al.  The crystal structure of methane phase III , 2003 .

[23]  Y. Akahama,et al.  X-ray diffraction measurements for solid methane at high pressures , 2002 .

[24]  W. Nellis,et al.  Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar) , 2001 .

[25]  R. Jeanloz,et al.  Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? , 1999, Science.

[26]  R. Bini,et al.  High-pressure infrared study of solid methane: Phase diagram up to 30 GPa , 1997 .

[27]  E Tosatti,et al.  Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperature , 1997, Science.

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  W. J. Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) , 1996 .

[31]  H. Jodl,et al.  High pressure crystal phases of solid CH4 probed by Fourier transform infrared spectroscopy , 1995 .

[32]  J. Pollack,et al.  An Analysis of Neptune ' s Stratospheric Haze Using High-Phase-Angle Voyager Images , 2022 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  W. Hubbard,et al.  Interior Structure of Neptune: Comparison with Uranus , 1991, Science.

[35]  W. Nellis,et al.  Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar) , 1981 .

[36]  M. Ross The ice layer in Uranus and Neptune—diamonds in the sky? , 1981, Nature.

[37]  M. Ross,et al.  Repulsive forces of simple molecules and mixtures at high density and temperature , 1980 .

[38]  H. Mao,et al.  Structure and compression of crystalline methane at high pressure and room temperature , 1980 .

[39]  W. Hubbard,et al.  Structure and evolution of Uranus and Neptune , 1980 .

[40]  W. Press Structure and Phase Transitions of Solid Heavy Methane (CD4) , 1972 .