Synthetic architecture of interior space for inorganic nanostructures

One of the major technological challenges in nanoscience and nanotechnology is the self-assembly of tiny nano-building units (e.g., nanokits and nanoparts) into larger (i.e., mesoscale or microscale) organized conformations and geometrical architectures for device applications. To meet the requirements of new applications, an interior space for the nanostructures may be further required. When coupled with chemical functionality of boundary materials, the interior “nanospace” of the nanostructures possesses both aesthetic beauty and scientific attraction. For example, in addition to well studied core–shell nanostructures, there has been increasing research interest in the fabrication of hollow inorganic nanostructures owing to their potential applications in optical, electronic, magnetic, catalytic and sensing devices ranging from photonic crystals to drug-delivery carriers and nanoreactors. In this feature article, we report our recent research progress in this emerging field; our research is concentrated on the exploration of various novel organizing schemes through which interior spaces with architectural design can be created for inorganic nanostructures. These template-free “one-pot” synthetic methods include “oriented attachment”, Ostwald ripening and Kirkendall effect etc. for direct solid evacuation under mild reaction conditions. Future research directions will also be addressed in this article.

[1]  H. Zeng,et al.  Reduction and reconstruction of Co3O4 nanocubes upon carbon deposition. , 2005, The journal of physical chemistry. B.

[2]  H. Zeng,et al.  Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. , 2005, Angewandte Chemie.

[3]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[4]  Zhi Zheng,et al.  Fabrication of hierarchical porous iron oxide films utilizing the Kirkendall effect. , 2005, Chemical communications.

[5]  B. Liu,et al.  Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. , 2005, Small.

[6]  Lide Zhang,et al.  Direct observation of the growth process of MgO nanoflowers by a simple chemical route. , 2005, Small.

[7]  H. Zeng,et al.  Large-scale synthesis of high-quality ultralong copper nanowires. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[9]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[10]  King-Ning Tu,et al.  Hollow nanostructures based on the Kirkendall effect: Design and stability considerations , 2005 .

[11]  H. Zeng,et al.  Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  George M Whitesides,et al.  Nanoscience, nanotechnology, and chemistry. , 2005, Small.

[13]  H. Yang,et al.  Synthetic architectures of TiO2/H2Ti5O11.H2O, ZnO/H2Ti5O11.H2O, ZnO/TiO2/H2Ti5O11.H2O, and ZnO/TiO2 nanocomposites. , 2005, Journal of the American Chemical Society.

[14]  Bin Liu,et al.  Fabrication of ZnO "dandelions" via a modified Kirkendall process. , 2004, Journal of the American Chemical Society.

[15]  H. Yang,et al.  Self-construction of hollow SnO(2) octahedra based on two-dimensional aggregation of nanocrystallites. , 2004, Angewandte Chemie.

[16]  H. Yang,et al.  Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. , 2004, Angewandte Chemie.

[17]  H. Zeng,et al.  Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[18]  B. Liu,et al.  Mesoscale organization of CuO nanoribbons: formation of "dandelions". , 2004, Journal of the American Chemical Society.

[19]  R. Caruso,et al.  Micrometer-to-nanometer replication of hierarchical structures by using a surface sol-gel process. , 2004, Angewandte Chemie.

[20]  B. Liu,et al.  Salt-Assisted Deposition of SnO2 on α-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes , 2004 .

[21]  B. Liu,et al.  Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[22]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[23]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[24]  Martin Steinhart,et al.  Nanotubes by template wetting: a modular assembly system. , 2004, Angewandte Chemie.

[25]  H. Zeng,et al.  Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals , 2004 .

[26]  H. Zeng,et al.  Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons , 2004 .

[27]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[28]  Jun Chen,et al.  Fabrication of Ru and Ru-based functionalized nanotubes. , 2004, Journal of the American Chemical Society.

[29]  Chad A Mirkin,et al.  Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles , 2004, Science.

[30]  Xin Fang,et al.  Temperature-controlled growth of α-Al2O3 nanobelts and nanosheets , 2003 .

[31]  Takashi Kato,et al.  Self-organized calcium carbonate with regular surface-relief structures. , 2003, Angewandte Chemie.

[32]  F. Caruso,et al.  Nanotubes Prepared by Layer‐by‐Layer Coating of Porous Membrane Templates , 2003 .

[33]  Dario Braga,et al.  Crystal engineering, where from? Where to? , 2003, Chemical communications.

[34]  X. Lou,et al.  An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. , 2003, Inorganic chemistry.

[35]  Yadong Li,et al.  ZnSe semiconductor hollow microspheres. , 2003, Angewandte Chemie.

[36]  H. Hah,et al.  Simple preparation of monodisperse hollow silica particles without using templatesElectronic supplementary information (ESI) available: TEM showing effects of hydrolysis time, reaction temperature and calcination on the particles. TGA of hollow particles, BET measurements of hollow and calcined holl , 2003 .

[37]  H. Zeng,et al.  Size-Controlled Growth of Co3O4 Nanocubes , 2003 .

[38]  Stephen Mann,et al.  Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. , 2003, Angewandte Chemie.

[39]  N. Kimizuka,et al.  Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. , 2003, Journal of the American Chemical Society.

[40]  Z. Niu,et al.  Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. , 2003, Angewandte Chemie.

[41]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[42]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[43]  Bin Liu,et al.  Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. , 2003, Journal of the American Chemical Society.

[44]  I. Bezverkhy,et al.  Genesis of Vesicle-Like and Tubular Morphologies in Inorganic Precipitates: Amorphous Mo Oxysulfides , 2003 .

[45]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[46]  X. Lou,et al.  Complex α-MoO3 Nanostructures with External Bonding Capacity for Self-Assembly , 2003 .

[47]  Hui Wang,et al.  Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In‐Situ Template Route , 2003 .

[48]  H. Zeng,et al.  Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4 Nanocubes at 95 °C , 2003 .

[49]  Kangnian Fan,et al.  Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. , 2003, Chemical communications.

[50]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[51]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[52]  H. Zeng,et al.  Hydrothermal Synthesis of α-MoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate. , 2002 .

[53]  C. R. Martin,et al.  Smart nanotubes for bioseparations and biocatalysis. , 2002, Journal of the American Chemical Society.

[54]  C. Jacobsen,et al.  Rhenium(IV) sulfide nanotubes. , 2002, Journal of the American Chemical Society.

[55]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[56]  Zhong Lin Wang,et al.  Growth and structure evolution of novel tin oxide diskettes. , 2002, Journal of the American Chemical Society.

[57]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[58]  H. Zeng,et al.  Arresting butterfly-like intermediate nanocrystals of beta-Co(OH)2 via ethylenediamine-mediated synthesis. , 2002, Journal of the American Chemical Society.

[59]  Samuel I Stupp,et al.  Semiconductor nanohelices templated by supramolecular ribbons. , 2002, Angewandte Chemie.

[60]  Alfons van Blaaderen,et al.  Layer-by-Layer Growth of Binary Colloidal Crystals , 2002, Science.

[61]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[62]  D. Reinhoudt,et al.  Synthesis Beyond the Molecule , 2002, Science.

[63]  O. Ikkala,et al.  Functional Materials Based on Self-Assembly of Polymeric Supramolecules , 2002, Science.

[64]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[65]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[66]  G. Whitesides,et al.  Crystals of crystals: fabrication of encapsulated and ordered two-dimensional arrays of microcrystals. , 2002, Journal of the American Chemical Society.

[67]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[68]  Yadong Li,et al.  Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires , 2002 .

[69]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[70]  Zu Rong Dai,et al.  Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. , 2002, Journal of the American Chemical Society.

[71]  G. U. Kulkarni,et al.  Size-dependent chemistry: properties of nanocrystals. , 2002, Chemistry.

[72]  C. N. R. Rao,et al.  Science and technology of nanomaterials: current status and future prospects , 2001 .

[73]  R. Caruso,et al.  Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers. , 2001 .

[74]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[75]  B. Zou,et al.  Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. , 2001, Journal of the American Chemical Society.

[76]  D. Mihailovic,et al.  Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes , 2001, Science.

[77]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[78]  R. Nesper,et al.  Synthesis and characterization of novel nanoscopic molybdenum oxide fibers , 2001 .

[79]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[80]  R. Penner,et al.  Molybdenum nanowires by electrodeposition. , 2000, Science.

[81]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[82]  Thomas,et al.  Design, Synthesis, and In Situ Characterization of New Solid Catalysts. , 1999, Angewandte Chemie.

[83]  Göltner Porous Solids from Rigid Colloidal Templates: Morphogenesis. , 1999, Angewandte Chemie.

[84]  C. Lieber,et al.  Load-Independent Friction: MoO3 Nanocrystal Lubricants , 1999 .

[85]  R. Nesper,et al.  Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes , 1999 .

[86]  T. Moritz,et al.  Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization , 1999 .

[87]  Jackie Y. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[88]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[89]  T. Bein,et al.  Inclusion Chemistry in Periodic Mesoporous Hosts , 1998 .

[90]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.

[91]  Martin Müller,et al.  Redox-Active Nanotubes of Vanadium Oxide. , 1998, Angewandte Chemie.

[92]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[93]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[94]  P. Ajayan,et al.  Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures , 1995, Nature.

[95]  Y. Matsui,et al.  Silica Gel Nanotubes Obtained by the Sol-Gel Method , 1995 .

[96]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[97]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[98]  Michael Pecht Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability , 1994 .

[99]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[100]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[101]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[102]  J. Brice,et al.  Crystal Growth Processes , 1987 .

[103]  E. Matijević,et al.  Copper hydrous oxide sols of uniform particle shape and size , 1973 .

[104]  A. Kinoshita,et al.  Cu2O Crystal Growth by Hydrothermal Technique , 1967 .

[105]  I. Kolthoff,et al.  Studies on Aging and Coprecipitation. XLV. The Irreversible Flocculation of Colloidal Silver Bromide and the Aging in the Flocculated State1 , 1954 .

[106]  A. Smigelskas Zinc diffusion in alpha brass , 1947 .

[107]  I. Kolthoff,et al.  Studies on Aging and Coprecipitation. XXXIV. The Aging of Freshly Precipitated Lead Chromate , 1941 .

[108]  I. Kolthoff,et al.  Studies on Aging of Fresh Precipitates. XIX. Aging of Freshly Precipitated Barium Sulfate in Dilute Barium and Sulfate Solutions1 , 1938 .