Extended and Unscented Kitchen Sinks

We propose a scalable multiple-output generalization of unscented and extended Gaussian processes. These algorithms have been designed to handle general likelihood models by linearizing them using a Taylor series or the Unscented Transform in a variational inference framework. We build upon random feature approximations of Gaussian process covariance functions and show that, on small-scale single-task problems, our methods can attain similar performance as the original algorithms while having less computational cost. We also evaluate our methods at a larger scale on MNIST and on a seismic inversion which is inherently a multi-task problem.

[1]  James Hensman,et al.  MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.

[2]  Alexander J. Smola,et al.  Fastfood: Approximate Kernel Expansions in Loglinear Time , 2014, ArXiv.

[3]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[4]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[5]  Manfred Opper,et al.  The Variational Gaussian Approximation Revisited , 2009, Neural Computation.

[6]  Carl E. Rasmussen,et al.  Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.

[7]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[8]  Le Song,et al.  Scalable Kernel Methods via Doubly Stochastic Gradients , 2014, NIPS.

[9]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[10]  Neil D. Lawrence,et al.  Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Le Song,et al.  A la Carte - Learning Fast Kernels , 2014, AISTATS.

[13]  James Hensman,et al.  Scalable Variational Gaussian Process Classification , 2014, AISTATS.

[14]  Edwin V. Bonilla,et al.  Extended and Unscented Gaussian Processes , 2014, NIPS.

[15]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[16]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[17]  O. Pietquin,et al.  Statistically linearized recursive least squares , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[18]  Benjamin Recht,et al.  Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning , 2008, NIPS.

[19]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[20]  Edwin V. Bonilla,et al.  Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.

[21]  Edwin V. Bonilla,et al.  Collaborative Multi-output Gaussian Processes , 2014, UAI.

[22]  Neil D. Lawrence,et al.  Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..

[23]  David M. Blei,et al.  Nonparametric variational inference , 2012, ICML.

[24]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.