Homotopic classification of band structures: Stable, fragile, delicate, and stable representation-protected topology

The topological classification of gapped band structures depends on the particular definition of topological equivalence. For translation-invariant systems, stable equivalence is defined by a lack of restrictions on the numbers of occupied and unoccupied bands, while imposing restrictions on one or both leads to ``fragile'' and ``delicate'' topology, respectively. In this article, we describe a homotopic classification of band structures -- which captures the topology beyond the stable equivalence -- in the presence of additional lattice symmetries. As examples, we present complete homotopic classifications for spinless band structures with twofold rotation, fourfold rotation and fourfold dihedral symmetries, both in presence and absence of time-reversal symmetry. Whereas the rules of delicate and fragile topology do not admit a bulk-boundary correspondence, we identify a version of stable topology, which restricts the representations of bands, but not their numbers, which does allow for anomalous states at symmetry-preserving boundaries, which are associated with nontrivial bulk topology.

[1]  T. Neupert,et al.  Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond , 2021, Physical Review B.

[2]  T. Neupert,et al.  Topologically Localized Insulators. , 2021, Physical review letters.

[3]  S. Murakami,et al.  Fractional hinge and corner charges in various crystal shapes with cubic symmetry , 2021, Physical Review B.

[4]  A. Furusaki,et al.  Fragile topological insulators protected by rotation symmetry without spin-orbit coupling , 2021, Physical Review B.

[5]  Jennifer Cano,et al.  Filling anomaly for general two- and three-dimensional C4 symmetric lattices , 2021 .

[6]  T. Neupert,et al.  N -band Hopf insulator , 2021, Physical Review Research.

[7]  S. Murakami,et al.  General corner charge formula in two-dimensional C_n-symmetric higher-order topological insulators , 2021, 2101.04322.

[8]  C. Ortix,et al.  The bulk-corner correspondence of time-reversal symmetric insulators , 2021 .

[9]  D. Vanderbilt,et al.  Quadrupole moments, edge polarizations, and corner charges in the Wannier representation , 2020, Physical Review B.

[10]  Robert-Jan Slager,et al.  Geometric approach to fragile topology beyond symmetry indicators , 2020, Physical Review B.

[11]  Haruki Watanabe,et al.  Fractional Corner Charge of Sodium Chloride , 2020, Physical Review X.

[12]  Titus Neupert,et al.  Multicellularity of Delicate Topological Insulators. , 2020, Physical review letters.

[13]  Haruki Watanabe,et al.  Corner charge and bulk multipole moment in periodic systems , 2020, 2007.14932.

[14]  Luka Trifunovic Bulk-and-edge to corner correspondence , 2020, 2006.16090.

[15]  Kenji Watanabe,et al.  Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle , 2020, Proceedings of the National Academy of Sciences.

[16]  B. Bradlyn,et al.  Band Representations and Topological Quantum Chemistry , 2020, Annual Review of Condensed Matter Physics.

[17]  P. Brouwer,et al.  Higher‐Order Topological Band Structures , 2020, physica status solidi (b).

[18]  Xueqin Huang,et al.  Experimental characterization of fragile topology in an acoustic metamaterial , 2020, Science.

[19]  C. Fang,et al.  New classes of topological crystalline insulators having surface rotation anomaly , 2017, Science Advances.

[20]  A. Soluyanov,et al.  Teleportation of Berry curvature on the surface of a Hopf insulator , 2019, Physical Review B.

[21]  B. Bernevig,et al.  Twisted bulk-boundary correspondence of fragile topology , 2019, Science.

[22]  Ling Lu,et al.  Crystallographic splitting theorem for band representations and fragile topological photonic crystals , 2019, Physical Review B.

[23]  S. Tsirkin,et al.  Fractional corner charges in spin-orbit coupled crystals , 2019, Physical Review Research.

[24]  B. Bernevig,et al.  All Magic Angles in Twisted Bilayer Graphene are Topological. , 2019, Physical review letters.

[25]  Renée Jorgensen Bolinger,et al.  Strictly speaking , 2019, Analysis.

[26]  Bohm-Jung Yang,et al.  Fragile topology protected by inversion symmetry: Diagnosis, bulk-boundary correspondence, and Wilson loop , 2019, Physical Review B.

[27]  N. Regnault,et al.  Fragile Phases as Affine Monoids: Classification and Material Examples , 2019 .

[28]  Bohm-Jung Yang,et al.  Stiefel–Whitney classes and topological phases in band theory , 2019, Chinese Physics B.

[29]  Luka Trifunovic,et al.  Difficulties in operator-based formulation of the bulk quadrupole moment , 2019, Physical Review B.

[30]  A. Vishwanath,et al.  Efficient topological materials discovery using symmetry indicators , 2019, Nature Physics.

[31]  A. Vishwanath,et al.  Comprehensive search for topological materials using symmetry indicators , 2019, Nature.

[32]  C. Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[33]  M. Zaletel,et al.  The gate-tunable strong and fragile topology of multilayer-graphene on a transition metal dichalcogenide , 2019, 1901.01294.

[34]  Fang Xie,et al.  Landau level of fragile topology , 2018, 1811.11786.

[35]  E. Cornfeld,et al.  Classification of crystalline topological insulators and superconductors with point group symmetries , 2018, Physical Review B.

[36]  X. Dai,et al.  Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase , 2018, Physical Review B.

[37]  Sheng-Jie Huang,et al.  Topological states from topological crystals , 2018, Science Advances.

[38]  W. Benalcazar,et al.  Quantization of fractional corner charge in Cn -symmetric higher-order topological crystalline insulators , 2018, Physical Review B.

[39]  A. Vishwanath,et al.  Shift Insulators: Rotation-Protected Two-Dimensional Topological Crystalline Insulators , 2018, Physical Review X.

[40]  Bohm-Jung Yang,et al.  Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle , 2018, Physical Review X.

[41]  A. Vishwanath,et al.  Faithful tight-binding models and fragile topology of magic-angle bilayer graphene , 2018, Physical Review B.

[42]  B. Bradlyn,et al.  Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: An example on the triangular lattice , 2018, Physical Review B.

[43]  Z. Fang,et al.  Catalogue of topological electronic materials , 2018, Nature.

[44]  A. Vishwanath,et al.  Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions , 2018, Physical Review B.

[45]  A. Vishwanath,et al.  Topological materials discovery by large-order symmetry indicators , 2018, Science Advances.

[46]  C. Ortix,et al.  Higher-order topological insulators protected by inversion and rotoinversion symmetries , 2018, Physical Review B.

[47]  A. Vishwanath,et al.  Efficient topological materials discovery using symmetry indicators , 2018, Nature Physics.

[48]  P. Brouwer,et al.  Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases , 2018, Physical Review X.

[49]  A. Black‐Schaffer,et al.  Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry , 2018, Physical Review B.

[50]  Z. Fang,et al.  Quantitative mappings between symmetry and topology in solids , 2017, Nature Communications.

[51]  C. Felser,et al.  Topology of Disconnected Elementary Band Representations. , 2017, Physical review letters.

[52]  A. Vishwanath,et al.  Fragile Topology and Wannier Obstructions. , 2017, Physical review letters.

[53]  C. Felser,et al.  Building blocks of topological quantum chemistry: Elementary band representations , 2017, 1709.01935.

[54]  B. Bernevig,et al.  Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators , 2017, 1708.04230.

[55]  M. Vergniory,et al.  Higher-order topological insulators , 2017, Science Advances.

[56]  P. Brouwer,et al.  Reflection-Symmetric Second-Order Topological Insulators and Superconductors. , 2017, Physical review letters.

[57]  Z. Fang,et al.  (d-2)-Dimensional Edge States of Rotation Symmetry Protected Topological States. , 2017, Physical review letters.

[58]  P. Brouwer,et al.  Bott periodicity for the topological classification of gapped states of matter with reflection symmetry , 2017, 1707.06306.

[59]  J. Holler,et al.  Topological Bloch oscillations , 2017, Physical Review B.

[60]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[61]  A. Vishwanath,et al.  Symmetry-based indicators of band topology in the 230 space groups , 2017, Nature Communications.

[62]  C. Kane,et al.  Topological classification of crystalline insulators through band structure combinatorics , 2016, 1612.02007.

[63]  Wladimir A. Benalcazar,et al.  Quantized electric multipole insulators , 2016, Science.

[64]  R. Kennedy Topological Hopf-Chern insulators and the Hopf superconductor , 2016, 1604.02840.

[65]  J. Brink,et al.  Topological mirror insulators in one dimension , 2016, 1604.02427.

[66]  V. Chua,et al.  Of bulk and boundaries: Generalized transfer matrices for tight-binding models , 2015, 1510.04279.

[67]  C. Fang,et al.  New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic , 2015 .

[68]  Y. Ando,et al.  Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials , 2015, 1501.00531.

[69]  B. Bernevig,et al.  Berry-phase description of topological crystalline insulators , 2014, 1409.3236.

[70]  R. Kennedy,et al.  Homotopy theory of strong and weak topological insulators , 2014, 1409.2529.

[71]  Kiyonori Gomi,et al.  Classification of "Quaternionic" Bloch-bundles: Topological Quantum Systems of type AII , 2014, 1404.5804.

[72]  K. Shiozaki,et al.  Topology of crystalline insulators and superconductors , 2014, 1403.3331.

[73]  M. Gilbert,et al.  Spin-orbit-free topological insulators without time-reversal symmetry. , 2014, Physical review letters.

[74]  D. Deng,et al.  Hopf insulators and their topologically protected surface states , 2013, 1307.7206.

[75]  T. Morimoto,et al.  Topological classification with additional symmetries from Clifford algebras , 2013, 1306.2505.

[76]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[77]  S. Ryu,et al.  Classification of topological insulators and superconductors in the presence of reflection symmetry , 2013, 1303.1843.

[78]  X. Dai,et al.  Wilson-Loop Characterization of Inversion-Symmetric Topological Insulators , 2012, 1208.4234.

[79]  M. Gilbert,et al.  Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators , 2012, 1207.5767.

[80]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[81]  Yi Zhang,et al.  Quantized response and topology of magnetic insulators with inversion symmetry , 2010, 1010.4335.

[82]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[83]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[84]  R. Roy Topological phases and the quantum spin Hall effect in three dimensions , 2009 .

[85]  A. Ludwig,et al.  Classification of Topological Insulators and Superconductors , 2009, 0905.2029.

[86]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[87]  Ying Ran,et al.  Topological surface States in three-dimensional magnetic insulators. , 2008, Physical review letters.

[88]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[89]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[90]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[91]  J. E. Moore,et al.  Topological invariants of time-reversal-invariant band structures , 2006, cond-mat/0607314.

[92]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[93]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[94]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[95]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[96]  D. Klein Graphitic polymer strips with edge states , 1994 .

[97]  M. Zirnbauer,et al.  Bott Periodicity for Z2 Symmetric Ground States of Gapped Free-Fermion Systems , 2015 .

[98]  Kiyonori Gomi,et al.  CLASSIFICATION OF "REAL" BLOCH-BUNDLES: TOPOLOGICAL INSULATORS OF TYPE AI , 2014 .

[99]  I. Miyazaki,et al.  AND T , 2022 .

[100]  R. Ho Algebraic Topology , 2022 .